Solveeit Logo

Question

Question: If \(f(x) = \left\{ \begin{matrix} 2x + 1\text{when}x < 1 \\ k\text{when}x = 1 \\ 5x - 2\text{when}x...

If f(x)={2x+1whenx<1kwhenx=15x2whenx>1 f(x) = \left\{ \begin{matrix} 2x + 1\text{when}x < 1 \\ k\text{when}x = 1 \\ 5x - 2\text{when}x > 1 \end{matrix} \right.\ is continuous at x =1, then the value of k is

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

Since f(x)f(x) is continuous at x = 1,

limx1f(x)=limx1+f(x)=f(1)\lim_{x \rightarrow 1^{-}}f(x) = \lim_{x \rightarrow 1^{+}}f(x) = f(1) …..(i)

Now limx1f(x)=limh0f(1h)\lim_{x \rightarrow 1^{-}}f(x) = \lim_{h \rightarrow 0}f(1 - h) = limh02(1h)+1=3\lim_{h \rightarrow 0}2(1 - h) + 1 = 3 i.e.,

limx1f(x)=3\lim_{x \rightarrow 1^{-}}f(x) = 3

Similarly, limx1+f(x)=limh0f(1+h)\lim_{x \rightarrow 1^{+}}f(x) = \lim_{h \rightarrow 0}f(1 + h) =limh05(1+h)2\lim_{h \rightarrow 0}5(1 + h) - 2 i.e.,

limx1+f(x)=3\lim_{x \rightarrow 1^{+}}f(x) = 3

So according to equation (i), we have k = 3.