Solveeit Logo

Question

Question: If f(x) = \(\left| \begin{matrix} 2^{- x} & e^{x\log_{e}2} & x^{2} \\ 2^{- 3x} & e^{3x\log_{e}2} & x...

If f(x) = 2xexloge2x223xe3xloge2x425xe5xloge21\left| \begin{matrix} 2^{- x} & e^{x\log_{e}2} & x^{2} \\ 2^{- 3x} & e^{3x\log_{e}2} & x^{4} \\ 2^{- 5x} & e^{5x\log_{e}2} & 1 \end{matrix} \right| Then

A

f(x) + f(–x) = 0

B

f(x) – f(–x) = 0

C

f(x) + f(–x) = 2

D

None of these

Answer

f(x) + f(–x) = 0

Explanation

Solution

f(x) = 2x2xx223x23xx425x25x1\left| \begin{matrix} 2^{- x} & 2^{x} & x^{2} \\ 2^{- 3x} & 2^{3x} & x^{4} \\ 2^{- 5x} & 2^{5x} & 1 \end{matrix} \right| f(–x) = 2x2xx223x23xx425x25x1\left| \begin{matrix} 2^{x} & 2^{- x} & x^{2} \\ 2^{3x} & 2^{- 3x} & x^{4} \\ 2^{5x} & 2^{- 5x} & 1 \end{matrix} \right| = – f(x)