Solveeit Logo

Question

Question: If \(f(x) = \left\{ \begin{aligned} & \begin{matrix} \frac{\sin\lbrack x\rbrack}{\lbrack x\rbrack},...

If f(x)={sin[x][x],[x]00,[x]=0 f(x) = \left\{ \begin{aligned} & \begin{matrix} \frac{\sin\lbrack x\rbrack}{\lbrack x\rbrack}, & \lbrack x\rbrack \neq 0 \end{matrix} \\ & \begin{matrix} 0, & \lbrack x\rbrack = 0 \end{matrix} \end{aligned} \right.\ , then limx0f(x)\lim_{x \rightarrow 0}f(x) equals

A

1

B

0

C

–1

D

Does not exist

Answer

Does not exist

Explanation

Solution

In closed interval of x=0x = 0 at right hand side [x] =0 and at left hand side [x]=1.\lbrack x\rbrack = - 1. Also [0] =0.

Therefore function is defined as f(x)={sin[x][x],(1x<0)0,(0x<1) f(x) = \left\{ \begin{matrix} \frac{\sin\lbrack x\rbrack}{\lbrack x\rbrack}, & ( - 1 \leq x < 0) \\ 0, & (0 \leq x < 1) \end{matrix} \right.\

\therefore Left hand limit =limx0f(x)=limx0sin[x][x]=sin(1)1=sin1c= \lim_{x \rightarrow 0 -}f(x) = \lim_{x \rightarrow 0 -}\frac{\sin\lbrack x\rbrack}{\lbrack x\rbrack} = \frac{\sin( - 1)}{- 1} = \sin 1^{c}Right hand limit = 0, Hence, limit doesn’t exist.