Solveeit Logo

Question

Question: If f(x) is the primitive of \(\frac{\sin\sqrt[3]{x}\log(1 + 3x)}{(\tan^{–1}\sqrt{x})^{2}(e^{\sqrt[3]...

If f(x) is the primitive of sinx3log(1+3x)(tan1x)2(ex31)\frac{\sin\sqrt[3]{x}\log(1 + 3x)}{(\tan^{–1}\sqrt{x})^{2}(e^{\sqrt[3]{x}}–1)} (x ¹ 0), then limx0\lim_{x \rightarrow 0} f ' (x) is –

A

0

B

3/5

C

5/3

D

None

Answer

None

Explanation

Solution

Q f(x) = sinx1/3log(1+3x)(tan1x)2(ex1/31)\int_{}^{}\frac{\sin x^{1/3}\log(1 + 3x)}{(\tan^{–1}\sqrt{x})^{2}(e^{x^{1/3}}–1)}

\ limx0\lim _ { x \rightarrow 0 } f'(x)

̃ limx0\lim _ { x \rightarrow 0 } (sinx1/3x1/3)x1/3[cos(1+3x)3x](3x)(tan1xx)2.x.(ex1/31x1/3).x1/3\frac{\left( \frac{\sin x^{1/3}}{x^{1/3}} \right)x^{1/3}\left\lbrack \frac{\cos(1 + 3x)}{3x} \right\rbrack(3x)}{\left( \frac{\tan^{–1}\sqrt{x}}{\sqrt{x}} \right)^{2}.x.\left( \frac{e^{x^{1/3}}–1}{x^{1/3}} \right).x^{1/3}}= 3