Solveeit Logo

Question

Question: If f(x) is quadratic expression which is positive for all real value of x and \(g(x) = f(x) + f^{'}(...

If f(x) is quadratic expression which is positive for all real value of x and g(x)=f(x)+f(x)+fg(x) = f(x) + f^{'}(x) + f^{'^{'}}. Then for any real value of x

A

g(x)<0g(x) < 0

B

g(x)>0g(x) > 0

C

g(x)=0g(x) = 0

D

g(x)0g(x) \geq 0

Answer

g(x)>0g(x) > 0

Explanation

Solution

Let f(x)=ax2+bx+cf(x) = ax^{2} + bx + c, then

g(x)=ax2+bx+c+2ax+b+2a=ax2+(b+2a)x+(b+c+2a)g(x) = ax^{2} + bx + c + 2ax + b + 2a = ax^{2} + (b + 2a)x + (b + c + 2a)f(x)>0f(x) > 0. Therefore b24ac<0b^{2} - 4ac < 0 and a>0a > 0

Now for g(x),

Discriminant =(b+2a)24a(b+c+2a)=b2+4a2+4ab= (b + 2a)^{2} - 4a(b + c + 2a) = b^{2} + 4a^{2} + 4ab $$- 4ab - 4ac - 8a^{2} = (b^{2} - 4ac) - 4a^{2} < 0

as b24ac<0b^{2} - 4ac < 0

Therefore sign of g(x) and a are same i.e. g(x)>0g(x) > 0.