Solveeit Logo

Question

Question: If f(x) is differentiable and strictly increasing function then the value of \(\lim_{x \rightarrow 0...

If f(x) is differentiable and strictly increasing function then the value of limx0f(x2)f(x)f(x)f(0)\lim_{x \rightarrow 0}\frac{f(x^{2}) - f(x)}{f(x) - f(0)} is

A

1

B

0

C

–1

D

2

Answer

–1

Explanation

Solution

limx0\lim _ { x \rightarrow 0 } f(x2)f(x)f(x)f(0)\frac{f(x^{2}) - f(x)}{f(x) - f(0)} (00)\left( \frac{0}{0} \right)

Apply L' Hospital rule

limx0\lim_{x \rightarrow 0} f(x2)(2x)f(x)f(x)\frac{f'(x^{2})(2x) - f'(x)}{f'(x)}

f '(x) is strictly increasing function so that f '(x) > 0

Ž f(0)(2×0)f(0)f(0)\frac{f'(0)(2 \times 0) - f'(0)}{f'(0)}

Ž – f(0)f(0)\frac{f'(0)}{f'(0)} = – 1