Solveeit Logo

Question

Question: If f(x) is continuous ∀ x∈R and \(\int_{0}^{x}{f(t)dt = \int_{x}^{1}}\)t<sup>2</sup>f(t) dt + \(\fr...

If f(x) is continuous ∀ x∈R and

0xf(t)dt=x1\int_{0}^{x}{f(t)dt = \int_{x}^{1}}t2f(t) dt + x168+x63\frac{x^{16}}{8} + \frac{x^{6}}{3}+ a then value of a is equal to

A

124- \frac{1}{24}

B

17168\frac{17}{168}

C

17\frac{1}{7}

D

167840- \frac{167}{840}

Answer

17168\frac{17}{168}

Explanation

Solution

diff. w.r.t. x to get

f ′(x) = – x2f(x) + 2x15 + 2x5

or dydx\frac{dy}{dx}+ x2y = 2x15 + 2x5

⇒ y. ex3/3e^{x^{3}/3}= 2ex3/32\int_{}^{}e^{x^{3}/3} (x15 + x5)dx