Solveeit Logo

Question

Question: If f(x) is a differentiable function then the solution of dy + (yf'(x) – f(x) f'(x)) dx = 0 is...

If f(x) is a differentiable function then the solution of dy + (yf'(x) – f(x) f'(x)) dx = 0 is

A

y = (f(x) – 1) + ce–f(x)

B

yf(x) = (f(x))2 + c

C

yef(x) = f(x) ef(x) + c

D

(y – f(x)) = f(x) e–f(x)

Answer

y = (f(x) – 1) + ce–f(x)

Explanation

Solution

dydx\frac{dy}{dx} = – [y – f(x)] f '(x)

Put y – f(x) = z dydx\frac{dy}{dx} – f'(x) = dzdx\frac{dz}{dx}

f '(x) + dzdx\frac{dz}{dx} = – zf '(x)

dz1+z\frac{dz}{1 + z} = – f '(x) dx

log (1 + z) = – f(x) + k 1 + z = e– f(x) + k

1 + y – f(x) = ce–f(x)

y = f(x) – 1 + ce–f(x)