Solveeit Logo

Question

Question: If \(f(x)\) is a continuous periodic function with period T, then the integral \(I = \int_{a}^{a + T...

If f(x)f(x) is a continuous periodic function with period T, then the integral I=aa+Tf(x)dxI = \int_{a}^{a + T}{f(x)dx} is

A

Equal to 2a2a

B

Equal to 3a

C

Independent of a

D

None of these

Answer

Independent of a

Explanation

Solution

Consider the function g(a)=aa+Tf(x)dxg(a) = \int_{a}^{a + T}{f(x)dx} =

a0f(x)dx+0Tf(x)dx+Ta+Tf(x)dx\int_{a}^{0}{f(x)dx} + \int_{0}^{T}{f(x)dx} + \int_{T}^{a + T}{f(x)dx}

Putting xT=yx - T = y in last integral, we get

Ta+Tf(x)dx=0af(y+T)dy=0af(y)dy\int_{T}^{a + T}{f(x)dx} = \int_{0}^{a}{f(y + T)dy} = \int_{0}^{a}{f(y)dy}

g(a)=a0f(x)dx+0Tf(x)dx+0af(x)dxg(a) = \int_{a}^{0}{f(x)dx} + \int_{0}^{T}{f(x)dx} + \int_{0}^{a}{f(x)dx} = 0Tf(x)dx\int_{0}^{T}{f(x)dx}

Hence g(a)g(a) is independent of a.