Solveeit Logo

Question

Question: If \(f(x) = \int_{x^{2}}^{x^{4}}{\sin\sqrt{t}dt,}\) then \(f^{'}(x)\) equals...

If f(x)=x2x4sintdt,f(x) = \int_{x^{2}}^{x^{4}}{\sin\sqrt{t}dt,} then f(x)f^{'}(x) equals

A

sinx2sinx\sin x^{2} - \sin x

B

4x3sinx22xsinx4x^{3}\sin x^{2} - 2x\sin x

C

x4sinx2xsinxx^{4}\sin x^{2} - x\sin x

D

None of these

Answer

4x3sinx22xsinx4x^{3}\sin x^{2} - 2x\sin x

Explanation

Solution

We have f(x)=x2x4sintdtf(x) = \int_{x^{2}}^{x^{4}}{\sin\sqrt{t}}dt

f(x)=ddx(x4)(sinx4)ddx(x2)(sinx2)f'(x) = \frac{d}{dx}(x^{4})(\sin\sqrt{x^{4}}) - \frac{d}{dx}(x^{2})(\sin\sqrt{x^{2}})

=4x3sinx22xsinx= 4x^{3}\sin x^{2} - 2x\sin x.