Solveeit Logo

Question

Question: If \(F(x) = \int_{x^{2}}^{x^{3}}{\log tdt(x > 0)}\), then \(F'(x)\) =...

If F(x)=x2x3logtdt(x>0)F(x) = \int_{x^{2}}^{x^{3}}{\log tdt(x > 0)}, then F(x)F'(x) =

A

(9x24x)logx(9x^{2} - 4x)\log x

B

(4x9x2)logx(4x - 9x^{2})\log x

C

(9x2+4x)logx(9x^{2} + 4x)\log x

D

None of these

Answer

(9x24x)logx(9x^{2} - 4x)\log x

Explanation

Solution

Applying formula we get F(x)=(logx3)3x2(logx2)2xF'(x) = (\log x^{3})3x^{2} - (\log x^{2})2x

= (3logx)3x22x(2logx)(3\log x)3x^{2} - 2x(2\log x) = 9x2logx4xlogx9x^{2}\log x - 4x\log x

= (9x24x)logx(9x^{2} - 4x)\log x.