Solveeit Logo

Question

Question: If f(x) =\(\int_{1}^{x}\frac{\tan^{- 1}(t)}{t}\)dt"xĪR<sup>+</sup> then the value of f(e<sup>2</sup>...

If f(x) =1xtan1(t)t\int_{1}^{x}\frac{\tan^{- 1}(t)}{t}dt"xĪR+ then the value of f(e2) – f(1e2)\left( \frac{1}{e^{2}} \right) is

A

0

B

π2\frac{\pi}{2}

C

p

D

2p

Answer

p

Explanation

Solution

f(x) Ž 1xtan1(t)t\int_{1}^{x}\frac{\tan^{- 1}(t)}{t} dt

f(1x)\left( \frac{1}{x} \right) Ž 11/xtan1(t)t\int_{1}^{1/x}\frac{\tan^{- 1}(t)}{t} dt

put t = 1/u

dt = –1/u2 du

f(1/x) Ž =1xtan1(1u)1/u\int_{1}^{x}\frac{\tan^{- 1}\left( \frac{1}{u} \right)}{1/u} (1u2)\left( - \frac{1}{u^{2}} \right)du

f(1/x) ŗ – 1xtan1(1u)u\int_{1}^{x}\frac{\tan^{- 1}\left( \frac{1}{u} \right)}{u}= – 1xcot1(u)u\int_{1}^{x}\frac{\cot^{- 1}(u)}{u} du

= – 1xcot1(t)t\int_{1}^{x}\frac{\cot^{- 1}(t)}{t}dt

f(x) – f(1/x) = 1xtan1t+cot1tt\int_{1}^{x}\frac{\tan^{- 1}t + \cot^{- 1}t}{t} dt

= 1xπ2×1t\int_{1}^{x}{\frac{\pi}{2} \times \frac{1}{t}} dt

f(x) – f(1/x) = π2\frac{\pi}{2} log(x)

f(e2) – f(1/e2) = π2\frac{\pi}{2} logee2 = p