Question
Question: If f(x) =\(\int_{1}^{x}\frac{\tan^{- 1}(t)}{t}\)dt"xĪR<sup>+</sup> then the value of f(e<sup>2</sup>...
If f(x) =∫1xttan−1(t)dt"xĪR+ then the value of f(e2) – f(e21) is
A
0
B
2π
C
p
D
2p
Answer
p
Explanation
Solution
f(x) Ž ∫1xttan−1(t) dt
f(x1) Ž ∫11/xttan−1(t) dt
put t = 1/u
dt = –1/u2 du
f(1/x) Ž =∫1x1/utan−1(u1) (−u21)du
f(1/x) ŗ – ∫1xutan−1(u1)= – ∫1xucot−1(u) du
= – ∫1xtcot−1(t)dt
f(x) – f(1/x) = ∫1xttan−1t+cot−1t dt
= ∫1x2π×t1 dt
f(x) – f(1/x) = 2π log(x)
f(e2) – f(1/e2) = 2π logee2 = p