Solveeit Logo

Question

Question: If $f(x) = \int_{0}^{\frac{\pi}{2}} \frac{\ln(1+x\sin^2\theta)}{\sin^2\theta} d\theta, x\ge 0$, then...

If f(x)=0π2ln(1+xsin2θ)sin2θdθ,x0f(x) = \int_{0}^{\frac{\pi}{2}} \frac{\ln(1+x\sin^2\theta)}{\sin^2\theta} d\theta, x\ge 0, then πf(3)\frac{\pi}{f'(3)} equals

Answer

4

Explanation

Solution

Let the given function be f(x)=0π2ln(1+xsin2θ)sin2θdθf(x) = \int_{0}^{\frac{\pi}{2}} \frac{\ln(1+x\sin^2\theta)}{\sin^2\theta} d\theta for x0x \ge 0. We need to find the value of πf(3)\frac{\pi}{f'(3)}.

First, we find the derivative of f(x)f(x) with respect to xx using Leibniz rule for differentiation under the integral sign. The rule states that if f(x)=abh(x,θ)dθf(x) = \int_{a}^{b} h(x, \theta) d\theta, where aa and bb are constants, then f(x)=abxh(x,θ)dθf'(x) = \int_{a}^{b} \frac{\partial}{\partial x} h(x, \theta) d\theta. In our case, h(x,θ)=ln(1+xsin2θ)sin2θh(x, \theta) = \frac{\ln(1+x\sin^2\theta)}{\sin^2\theta}, a=0a=0, and b=π2b=\frac{\pi}{2}. The partial derivative of h(x,θ)h(x, \theta) with respect to xx is: x(ln(1+xsin2θ)sin2θ)=1sin2θx(ln(1+xsin2θ))\frac{\partial}{\partial x} \left(\frac{\ln(1+x\sin^2\theta)}{\sin^2\theta}\right) = \frac{1}{\sin^2\theta} \cdot \frac{\partial}{\partial x} (\ln(1+x\sin^2\theta)) Using the chain rule, x(ln(1+xsin2θ))=11+xsin2θx(1+xsin2θ)=11+xsin2θsin2θ\frac{\partial}{\partial x} (\ln(1+x\sin^2\theta)) = \frac{1}{1+x\sin^2\theta} \cdot \frac{\partial}{\partial x} (1+x\sin^2\theta) = \frac{1}{1+x\sin^2\theta} \cdot \sin^2\theta. So, xh(x,θ)=1sin2θsin2θ1+xsin2θ=11+xsin2θ\frac{\partial}{\partial x} h(x, \theta) = \frac{1}{\sin^2\theta} \cdot \frac{\sin^2\theta}{1+x\sin^2\theta} = \frac{1}{1+x\sin^2\theta}. Thus, f(x)=0π211+xsin2θdθf'(x) = \int_{0}^{\frac{\pi}{2}} \frac{1}{1+x\sin^2\theta} d\theta.

Now, we need to evaluate this integral. Let I(x)=0π211+xsin2θdθI(x) = \int_{0}^{\frac{\pi}{2}} \frac{1}{1+x\sin^2\theta} d\theta. We can divide the numerator and denominator by cos2θ\cos^2\theta: I(x)=0π2sec2θsec2θ+xtan2θdθI(x) = \int_{0}^{\frac{\pi}{2}} \frac{\sec^2\theta}{\sec^2\theta + x\tan^2\theta} d\theta. Using the identity sec2θ=1+tan2θ\sec^2\theta = 1+\tan^2\theta: I(x)=0π2sec2θ1+tan2θ+xtan2θdθ=0π2sec2θ1+(1+x)tan2θdθI(x) = \int_{0}^{\frac{\pi}{2}} \frac{\sec^2\theta}{1+\tan^2\theta + x\tan^2\theta} d\theta = \int_{0}^{\frac{\pi}{2}} \frac{\sec^2\theta}{1+(1+x)\tan^2\theta} d\theta. Let u=tanθu = \tan\theta. Then du=sec2θdθdu = \sec^2\theta d\theta. When θ=0\theta = 0, u=tan(0)=0u = \tan(0) = 0. When θ=π2\theta = \frac{\pi}{2}, u=tan(π2)=u = \tan(\frac{\pi}{2}) = \infty. The integral becomes: I(x)=0du1+(1+x)u2I(x) = \int_{0}^{\infty} \frac{du}{1+(1+x)u^2}. We can write the denominator as 1+(1+xu)21+(\sqrt{1+x}u)^2. Let v=1+xuv = \sqrt{1+x}u. Then dv=1+xdudv = \sqrt{1+x}du, so du=dv1+xdu = \frac{dv}{\sqrt{1+x}}. When u=0u = 0, v=0v = 0. When u=u = \infty, v=v = \infty. The integral becomes: I(x)=011+v2dv1+x=11+x0dv1+v2I(x) = \int_{0}^{\infty} \frac{1}{1+v^2} \frac{dv}{\sqrt{1+x}} = \frac{1}{\sqrt{1+x}} \int_{0}^{\infty} \frac{dv}{1+v^2}. The integral 0dv1+v2\int_{0}^{\infty} \frac{dv}{1+v^2} is a standard integral: 0dv1+v2=[arctan(v)]0=arctan()arctan(0)=π20=π2\int_{0}^{\infty} \frac{dv}{1+v^2} = [\arctan(v)]_{0}^{\infty} = \arctan(\infty) - \arctan(0) = \frac{\pi}{2} - 0 = \frac{\pi}{2}. So, I(x)=11+xπ2=π21+xI(x) = \frac{1}{\sqrt{1+x}} \cdot \frac{\pi}{2} = \frac{\pi}{2\sqrt{1+x}}. Thus, f(x)=π21+xf'(x) = \frac{\pi}{2\sqrt{1+x}}.

We need to find the value of πf(3)\frac{\pi}{f'(3)}. First, we find f(3)f'(3) by substituting x=3x=3 into the expression for f(x)f'(x): f(3)=π21+3=π24=π22=π4f'(3) = \frac{\pi}{2\sqrt{1+3}} = \frac{\pi}{2\sqrt{4}} = \frac{\pi}{2 \cdot 2} = \frac{\pi}{4}.

Finally, we calculate πf(3)\frac{\pi}{f'(3)}: πf(3)=ππ4=π4π=4\frac{\pi}{f'(3)} = \frac{\pi}{\frac{\pi}{4}} = \pi \cdot \frac{4}{\pi} = 4.

The final answer is 4\boxed{4}.

Explanation:

  1. Use Leibniz rule to differentiate f(x)f(x) under the integral sign.
  2. The derivative f(x)f'(x) is found to be 0π211+xsin2θdθ\int_{0}^{\frac{\pi}{2}} \frac{1}{1+x\sin^2\theta} d\theta.
  3. Evaluate the integral by transforming it using trigonometric identities and substitution (tanθ\tan\theta).
  4. The integral evaluates to π21+x\frac{\pi}{2\sqrt{1+x}}, so f(x)=π21+xf'(x) = \frac{\pi}{2\sqrt{1+x}}.
  5. Calculate f(3)f'(3) by substituting x=3x=3 into the expression for f(x)f'(x).
  6. f(3)=π4f'(3) = \frac{\pi}{4}.
  7. Calculate the required value πf(3)=ππ4=4\frac{\pi}{f'(3)} = \frac{\pi}{\frac{\pi}{4}} = 4.