Solveeit Logo

Question

Question: If $f(x) = \int \frac{d(\sin x - \cos x)}{1-\sin 2x}, f(0) = 1$, then the function $f(x)$ is...

If f(x)=d(sinxcosx)1sin2x,f(0)=1f(x) = \int \frac{d(\sin x - \cos x)}{1-\sin 2x}, f(0) = 1, then the function f(x)f(x) is

A

12cosec(x+π4)\frac{1}{\sqrt{2}}cosec(x+\frac{\pi}{4})

B

1cosx+sinx\frac{1}{\cos x + \sin x}

C

12sec(x+π4)\frac{1}{\sqrt{2}}sec(x+\frac{\pi}{4})

D

1sin2x1-\sin 2x

Answer

12sec(x+π4)\frac{1}{\sqrt{2}}sec(x+\frac{\pi}{4})

Explanation

Solution

The problem asks us to find the function f(x)f(x) given its integral form and an initial condition.

1. Simplify the integrand: The given integral is f(x)=d(sinxcosx)1sin2xf(x) = \int \frac{d(\sin x - \cos x)}{1-\sin 2x}.

First, let's analyze the numerator: d(sinxcosx)=(ddx(sinxcosx))dx=(cosx(sinx))dx=(cosx+sinx)dxd(\sin x - \cos x) = (\frac{d}{dx}(\sin x - \cos x)) dx = (\cos x - (-\sin x)) dx = (\cos x + \sin x) dx.

Next, let's simplify the denominator using trigonometric identities: We know that 1=sin2x+cos2x1 = \sin^2 x + \cos^2 x and sin2x=2sinxcosx\sin 2x = 2\sin x \cos x. So, 1sin2x=sin2x+cos2x2sinxcosx1 - \sin 2x = \sin^2 x + \cos^2 x - 2\sin x \cos x. This is the expansion of a perfect square: (sinxcosx)2(\sin x - \cos x)^2. Thus, 1sin2x=(sinxcosx)21 - \sin 2x = (\sin x - \cos x)^2.

Substituting these simplified forms back into the integral, we get: f(x)=(cosx+sinx)dx(sinxcosx)2f(x) = \int \frac{(\cos x + \sin x) dx}{(\sin x - \cos x)^2}.

2. Perform substitution to solve the integral: Let u=sinxcosxu = \sin x - \cos x. Then, the differential du=(cosx+sinx)dxdu = (\cos x + \sin x) dx.

Substituting uu and dudu into the integral: f(x)=duu2=u2duf(x) = \int \frac{du}{u^2} = \int u^{-2} du.

Now, integrate u2u^{-2} with respect to uu: f(x)=u2+12+1+C=u11+C=1u+Cf(x) = \frac{u^{-2+1}}{-2+1} + C = \frac{u^{-1}}{-1} + C = -\frac{1}{u} + C.

Substitute back u=sinxcosxu = \sin x - \cos x: f(x)=1sinxcosx+C=1cosxsinx+Cf(x) = -\frac{1}{\sin x - \cos x} + C = \frac{1}{\cos x - \sin x} + C.

3. Use the initial condition to find the constant of integration (C): We are given that f(0)=1f(0) = 1. Substitute x=0x=0 into the expression for f(x)f(x): f(0)=1cos0sin0+Cf(0) = \frac{1}{\cos 0 - \sin 0} + C. We know that cos0=1\cos 0 = 1 and sin0=0\sin 0 = 0. So, f(0)=110+C=1+Cf(0) = \frac{1}{1 - 0} + C = 1 + C.

Given f(0)=1f(0) = 1, we have: 1+C=11 + C = 1 This implies C=0C = 0.

Therefore, the function f(x)f(x) is: f(x)=1cosxsinxf(x) = \frac{1}{\cos x - \sin x}.

4. Compare with the given options: Let's simplify each option to see which one matches our derived f(x)f(x).

  • A. 12csc(x+π4)\frac{1}{\sqrt{2}}\csc(x+\frac{\pi}{4}) csc(x+π4)=1sin(x+π4)\csc(x+\frac{\pi}{4}) = \frac{1}{\sin(x+\frac{\pi}{4})}. Using the sine addition formula sin(A+B)=sinAcosB+cosAsinB\sin(A+B) = \sin A \cos B + \cos A \sin B: sin(x+π4)=sinxcosπ4+cosxsinπ4=sinx12+cosx12=12(sinx+cosx)\sin(x+\frac{\pi}{4}) = \sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} = \sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}(\sin x + \cos x). So, Option A becomes 1212(sinx+cosx)=1sinx+cosx\frac{1}{\sqrt{2} \cdot \frac{1}{\sqrt{2}}(\sin x + \cos x)} = \frac{1}{\sin x + \cos x}. This does not match f(x)f(x).

  • B. 1cosx+sinx\frac{1}{\cos x + \sin x} This is the same as the simplified form of Option A, so it does not match f(x)f(x).

  • C. 12sec(x+π4)\frac{1}{\sqrt{2}}\sec(x+\frac{\pi}{4}) sec(x+π4)=1cos(x+π4)\sec(x+\frac{\pi}{4}) = \frac{1}{\cos(x+\frac{\pi}{4})}. Using the cosine addition formula cos(A+B)=cosAcosBsinAsinB\cos(A+B) = \cos A \cos B - \sin A \sin B: cos(x+π4)=cosxcosπ4sinxsinπ4=cosx12sinx12=12(cosxsinx)\cos(x+\frac{\pi}{4}) = \cos x \cos \frac{\pi}{4} - \sin x \sin \frac{\pi}{4} = \cos x \cdot \frac{1}{\sqrt{2}} - \sin x \cdot \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}(\cos x - \sin x). So, Option C becomes 1212(cosxsinx)=1cosxsinx\frac{1}{\sqrt{2} \cdot \frac{1}{\sqrt{2}}(\cos x - \sin x)} = \frac{1}{\cos x - \sin x}. This matches our derived f(x)f(x).

  • D. 1sin2x1-\sin 2x This is clearly not f(x)f(x).

Thus, option C is the correct answer.