Solveeit Logo

Question

Question: If \(f(x)\), \(g(x)\) be twice differential functions on \([0,2]\) satisfying \(f^{"}(x) = g^{"}(x),...

If f(x)f(x), g(x)g(x) be twice differential functions on [0,2][0,2] satisfying f"(x)=g"(x),f(1)=2g(1)=4f^{"}(x) = g^{"}(x), f^{'}(1) = 2g^{'}(1) = 4 and f(2)=3g(2)=9f(2) = 3g(2) = 9, then f(x)g(x)f(x) - g(x) at x=4x = 4 equals.

A

0

B

10

C

8

D

2

Answer

10

Explanation

Solution

We have, f"(x)=g"(x).f^{"}(x) = g^{"}(x). On integration,

we get f(x)=g(x)+Cf^{'}(x) = g^{'}(x) + C ……. (i)

Putting x=1, we get

f(1)=g(1)+Cf^{'}(1) = g(1) + C

4=2+C4 = 2 + C

C=2C = 2

f(x)=g(x)+2\therefore f^{'}(x) = g^{'}(x) + 2

Integrating w.r.t.x, we get f(x) =g(x) +2x+c1c_{1} ……. (ii)

Putting x = 2, we get.

f(2)=g(2)+4+c1f(2) = g(2) + 4 + c_{1}

9=3+4+c19 = 3 + 4 + c_{1}

c1=2c_{1} = 2

f(x)=g(x)+2x+2\therefore f(x) = g(x) + 2x + 2

Putting x=4, we get f(4) -g(4) =10.