Question
Question: If \(f(x)\), \(g(x)\) be twice differential functions on \([0,2]\) satisfying \(f^{"}(x) = g^{"}(x),...
If f(x), g(x) be twice differential functions on [0,2] satisfying f"(x)=g"(x),f′(1)=2g′(1)=4 and f(2)=3g(2)=9, then f(x)−g(x) at x=4 equals.
A
0
B
10
C
8
D
2
Answer
10
Explanation
Solution
We have, f"(x)=g"(x). On integration,
we get f′(x)=g′(x)+C ……. (i)
Putting x=1, we get
f′(1)=g(1)+C
⇒4=2+C
⇒ C=2
∴f′(x)=g′(x)+2
Integrating w.r.t.x, we get f(x) =g(x) +2x+c1 ……. (ii)
Putting x = 2, we get.
f(2)=g(2)+4+c1
⇒ 9=3+4+c1
⇒ c1=2
∴f(x)=g(x)+2x+2
Putting x=4, we get f(4) -g(4) =10.