Solveeit Logo

Question

Question: If f(x) f(y) + 2 = f(x) + f(y) + f(xy) and f(1) = 2, then sgn f(x) is equal to (where sgn denotes si...

If f(x) f(y) + 2 = f(x) + f(y) + f(xy) and f(1) = 2, then sgn f(x) is equal to (where sgn denotes signum function):

A

0

B

1

C

-1

D

4

Answer

1

Explanation

Solution

The given functional equation is: f(x)f(y)+2=f(x)+f(y)+f(xy)f(x) f(y) + 2 = f(x) + f(y) + f(xy) The given condition is f(1)=2f(1) = 2.

Rearrange the terms of the functional equation: f(x)f(y)f(x)f(y)+1=f(xy)1f(x) f(y) - f(x) - f(y) + 1 = f(xy) - 1 This can be factored as: (f(x)1)(f(y)1)=f(xy)1(f(x) - 1)(f(y) - 1) = f(xy) - 1

Let g(x)=f(x)1g(x) = f(x) - 1. Substituting this into the equation, we get: g(x)g(y)=g(xy)g(x) g(y) = g(xy)

Now, let's use the condition f(1)=2f(1) = 2. Since g(x)=f(x)1g(x) = f(x) - 1, we have g(1)=f(1)1=21=1g(1) = f(1) - 1 = 2 - 1 = 1.

We need to find the general solution for the functional equation g(x)g(y)=g(xy)g(x)g(y) = g(xy) with the condition g(1)=1g(1)=1.

Case 1: x=0x=0 g(0)g(y)=g(0)g(0)g(y) = g(0). If there exists any y0y_0 such that g(y0)1g(y_0) \neq 1, then g(0)g(0) must be 00. If g(y)=1g(y)=1 for all yy, then g(x)=1g(x)=1 is a solution. If g(x)=1g(x)=1 for all xx, then f(x)=g(x)+1=1+1=2f(x) = g(x)+1 = 1+1 = 2. Let's check f(x)=2f(x)=2 in the original equation: 22+2=2+2+22 \cdot 2 + 2 = 2 + 2 + 2 4+2=64 + 2 = 6 6=66 = 6 This solution f(x)=2f(x)=2 is valid and satisfies f(1)=2f(1)=2. For f(x)=2f(x)=2, sgn f(x)=sgn(2)=1f(x) = \text{sgn}(2) = 1.

Case 2: g(0)=0g(0)=0. If g(0)=0g(0)=0, then f(0)=g(0)+1=0+1=1f(0) = g(0)+1 = 0+1 = 1. This is consistent with the original equation (as shown in thought process). For x0x \neq 0: Since g(1)=1g(1)=1, we can set y=1/xy=1/x (for x0x \neq 0): g(x)g(1/x)=g(x1/x)=g(1)=1g(x)g(1/x) = g(x \cdot 1/x) = g(1) = 1. This implies that g(x)0g(x) \neq 0 for any x0x \neq 0.

Consider x>0x > 0: Let x=etx = e^t and y=euy = e^u. Then g(et)g(eu)=g(et+u)g(e^t) g(e^u) = g(e^{t+u}). Let h(t)=g(et)h(t) = g(e^t). Then h(t)h(u)=h(t+u)h(t)h(u) = h(t+u). This is Cauchy's functional equation. The continuous solutions are of the form h(t)=ath(t) = a^t for some constant a>0a > 0. So g(et)=atg(e^t) = a^t. Substituting t=lnxt = \ln x, we get g(x)=alnx=(elna)lnx=xlnag(x) = a^{\ln x} = (e^{\ln a})^{\ln x} = x^{\ln a}. Let c=lnac = \ln a. So, g(x)=xcg(x) = x^c for x>0x > 0. Using g(1)=1g(1)=1, we have 1c=11^c=1, which holds for any cc.

Consider x<0x < 0: Let x=1x = -1. g(1)g(1)=g((1)(1))=g(1)=1g(-1)g(-1) = g((-1)(-1)) = g(1) = 1. So (g(1))2=1(g(-1))^2 = 1, which means g(1)=1g(-1) = 1 or g(1)=1g(-1) = -1.

Subcase 2.1: g(1)=1g(-1) = 1. For any x<0x < 0, we can write x=xx = -|x|. g(x)=g(x)=g(1x)=g(1)g(x)=1g(x)=g(x)g(x) = g(-|x|) = g(-1 \cdot |x|) = g(-1)g(|x|) = 1 \cdot g(|x|) = g(|x|). Since for t>0t > 0, g(t)=tcg(t) = t^c, we have g(x)=xcg(x) = |x|^c for x<0x < 0. Combining with g(x)=xcg(x)=x^c for x>0x>0, we get g(x)=xcg(x) = |x|^c for all x0x \neq 0. And g(0)=0g(0)=0. So f(x)=xc+1f(x) = |x|^c + 1 for x0x \neq 0, and f(0)=1f(0)=1. For f(x)f(x) to be defined for all real xx, cc must be such that xc|x|^c is defined. If cc is an integer, this is fine. If cc is an even integer, say c=2kc=2k for kZk \in \mathbb{Z}: f(x)=x2k+1=x2k+1f(x) = |x|^{2k} + 1 = x^{2k} + 1. For k=0k=0, f(x)=x0+1=1+1=2f(x) = x^0+1 = 1+1=2, which is the solution from Case 1. For k=1k=1, f(x)=x2+1f(x) = x^2+1. Let's check f(x)=x2+1f(x)=x^2+1: f(1)=12+1=2f(1)=1^2+1=2. This is valid. For f(x)=x2+1f(x)=x^2+1, since x20x^2 \ge 0, f(x)=x2+11f(x) = x^2+1 \ge 1. Therefore, f(x)f(x) is always positive. So sgn f(x)=1f(x) = 1.

Subcase 2.2: g(1)=1g(-1) = -1. For any x<0x < 0, g(x)=g(1x)=g(1)g(x)=1xc=xcg(x) = g(-1 \cdot |x|) = g(-1)g(|x|) = -1 \cdot |x|^c = -|x|^c. So g(x)=xcg(x) = x^c for x>0x>0, g(x)=xcg(x) = -|x|^c for x<0x<0, and g(0)=0g(0)=0. This means f(x)=xc+1f(x) = x^c+1 for x>0x>0, f(x)=xc+1f(x) = -|x|^c+1 for x<0x<0, and f(0)=1f(0)=1. For f(x)f(x) to be defined for all real xx, cc must be an integer. If cc is an even integer, c=2kc=2k: f(x)=x2k+1f(x) = x^{2k}+1 for x>0x>0. f(x)=x2k+1=x2k+1f(x) = -|x|^{2k}+1 = -x^{2k}+1 for x<0x<0. This means f(x)f(x) is not symmetric. For example, if c=2c=2, f(x)=x2+1f(x)=x^2+1 for x>0x>0 and f(x)=x2+1f(x)=-x^2+1 for x<0x<0. For x=2x=2, f(2)=22+1=5f(2)=2^2+1=5. sgn f(2)=1f(2)=1. For x=2x=-2, f(2)=(2)2+1=4+1=3f(-2)=-(-2)^2+1 = -4+1 = -3. sgn f(2)=1f(-2)=-1. In this case, sgn f(x)f(x) is not constant. This contradicts the options being constant values.

If cc is an odd integer, c=2k+1c=2k+1: f(x)=x2k+1+1f(x) = x^{2k+1}+1 for x>0x>0. f(x)=x2k+1+1=(x)2k+1+1=(1)2k+1x2k+1+1=(1)x2k+1+1=x2k+1+1f(x) = -|x|^{2k+1}+1 = -(-x)^{2k+1}+1 = -(-1)^{2k+1}x^{2k+1}+1 = -(-1)x^{2k+1}+1 = x^{2k+1}+1 for x<0x<0. So f(x)=x2k+1+1f(x) = x^{2k+1}+1 for all x0x \neq 0, and f(0)=1f(0)=1. For example, if c=1c=1, f(x)=x+1f(x)=x+1. For x=2x=2, f(2)=2+1=3f(2)=2+1=3. sgn f(2)=1f(2)=1. For x=2x=-2, f(2)=2+1=1f(-2)=-2+1=-1. sgn f(2)=1f(-2)=-1. In this case, sgn f(x)f(x) is not constant. This contradicts the options being constant values.

Summary of solutions for f(x)f(x) that satisfy f(1)=2f(1)=2 and the functional equation:

  1. f(x)=2f(x) = 2. In this case, sgn f(x)=1f(x) = 1.
  2. f(x)=x2k+1f(x) = x^{2k}+1 where kk is a non-zero integer. For f(x)f(x) to be defined for all xx, 2k2k must be a non-negative even integer. So k{1,2,3,}k \in \{1, 2, 3, \dots\}. For any k1k \ge 1, x2k0x^{2k} \ge 0, so x2k+11x^{2k}+1 \ge 1. Thus f(x)>0f(x) > 0. In this case, sgn f(x)=1f(x) = 1.
  3. f(x)=x2k+1+1f(x) = x^{2k+1}+1 where kk is an integer. For k=0k=0, f(x)=x+1f(x)=x+1. For k=1k=1, f(x)=x3+1f(x)=x^3+1. These solutions result in sgn f(x)f(x) not being constant (e.g., f(2)=1f(-2)=-1 for f(x)=x+1f(x)=x+1).

Since the question asks for "sgn f(x)" which implies a single constant value (as per the options), we must choose the solutions where sgn f(x)f(x) is constant. These are f(x)=2f(x)=2 and f(x)=x2k+1f(x)=x^{2k}+1 for kNk \in \mathbb{N}. In both these cases, sgn f(x)=1f(x) = 1.

The final answer is 1\boxed{\text{1}}

The final answer is 1\boxed{\text{1}}