Question
Question: If \(f(x) = \frac{\sin(e^{x - 2} - 1)}{\log(x - 1)},\) then \(\lim_{x \rightarrow 2}f(x)\) is given ...
If f(x)=log(x−1)sin(ex−2−1), then limx→2f(x) is given by
A
– 2
B
–1
C
0
D
1
Answer
1
Explanation
Solution
limx→2f(x)=limx→2log(t+1)sin(ex−2−1)=limt→0log(t+1)sin(et−1).
(Putting x = 2 + t)
=limx→∞et−1sin(et−1).tet−1.log(1+t)t =limt→0et−1sin(et−1)(1!1+2!t+.....)[(1−21t+31t2−.....)1]=1.1.1= 1
[∵As t→0,et−1→0, ∴(et−1)sin(et−1)=1]