Question
Question: If f(x) = \(\frac{1}{3}\left\{ f(x + 1) + \frac{5}{f(x + 2)} \right\}\) and f(x) \> 0 for all x Ī R,...
If f(x) = 31{f(x+1)+f(x+2)5} and f(x) > 0 for all x Ī R, then limx→∞f(x) is
A
52
B
25
C
D
Does not exist
Answer
25
Explanation
Solution
Let limx→∞f(x) = I then,
limx→∞f(x+1)limx→∞f(x+2)=I
Since, f(x)=31{f(x+1)+f(x+2)5}
\ =−x(1+ax1−ax)=x(ax+1ax−1)=f(x)
Ž I = 31(I+I5) Ž 3I2 = I2 + 5
Ž 2I2 = 5 Ž I =25.