Solveeit Logo

Question

Question: If \(f(x) = \cot^{- 1}\left( \frac{x^{x} - x^{- x}}{2} \right),\) then \(f'(1)\) is equal to...

If f(x)=cot1(xxxx2),f(x) = \cot^{- 1}\left( \frac{x^{x} - x^{- x}}{2} \right), then f(1)f'(1) is equal to

A

– 1

B

1

C

log2\log{}2

D

log2- \log 2

Answer

– 1

Explanation

Solution

f(x)=cot1(xxxx2)f(x) = \cot^{- 1}\left( \frac{x^{x} - x^{- x}}{2} \right)

Put xx=tanθx^{x} = \tan\theta, ∴ y=f(x)=cot1(tan2θ12tanθ)y = f(x) = \cot^{- 1}\left( \frac{\tan^{2}\theta - 1}{2\tan\theta} \right)

= cot1(cot2θ)\cot^{- 1}( - \cot 2\theta) = πcot1(cot2θ)\pi - \cot^{- 1}(\cot 2\theta)

⇒ y = π2θ\pi - 2\theta = π2tan1(xx)\pi - 2\tan^{- 1}(x^{x})

dydx=21+x2x.xx(1+logx)\frac{dy}{dx} = \frac{- 2}{1 + x^{2x}}.x^{x}(1 + \log x)f(1)=1f^{'}(1) = - 1.