Question
Question: If \(f(x) = \cot^{- 1}\left( \frac{3x - x^{3}}{1 - 3x^{2}} \right)\) and \(g(x) = \cos^{- 1}\left( \...
If f(x)=cot−1(1−3x23x−x3) and g(x)=cos−1(1+x21−x2), then
limx→ag(x)−g(a)f(x)−f(a),0<a<21 is
A
2(1+a2)3
B
2(1+x2)3
C
23
D
−23
Answer
−23
Explanation
Solution
f(x)=cot−1{1−3x23x−x3} and g(x)=cos−1{1+x21−x2}
Put x=tanθ in both equation
f(θ)=cot−1{1−3tan2θ3tanθ−tan3θ}=cot−1{tan3θ}
f(θ)=cot−1cot(2π−3θ)=2π−3θ⇒f′(θ)=−3 ..….(i)
andg(θ)=cos−1{1+tan2θ1−tan2θ}=cos−1(cos2θ)=2θ
⇒g′(θ)=2 ….. (ii)
Nowlimx→a(g(x)−g(a)f(x)−f(a))=limx→a(x−af(x)−f(a))limx→a(x−ag(x)−g(a))1=f′(x).g′(x)1=−3×21=−23.