Solveeit Logo

Question

Question: If \(f(x) = \cot^{- 1}\left( \frac{3x - x^{3}}{1 - 3x^{2}} \right)\) and \(g(x) = \cos^{- 1}\left( \...

If f(x)=cot1(3xx313x2)f(x) = \cot^{- 1}\left( \frac{3x - x^{3}}{1 - 3x^{2}} \right) and g(x)=cos1(1x21+x2)g(x) = \cos^{- 1}\left( \frac{1 - x^{2}}{1 + x^{2}} \right), then

limxaf(x)f(a)g(x)g(a),0<a<12\lim_{x \rightarrow a}\frac{f(x) - f(a)}{g(x) - g(a)},0 < a < \frac{1}{2} is

A

32(1+a2)\frac{3}{2(1 + a^{2})}

B

32(1+x2)\frac{3}{2(1 + x^{2})}

C

32\frac{3}{2}

D

32- \frac{3}{2}

Answer

32- \frac{3}{2}

Explanation

Solution

f(x)=cot1{3xx313x2}f(x) = \cot^{- 1}\left\{ \frac{3x - x^{3}}{1 - 3x^{2}} \right\} and g(x)=cos1{1x21+x2}g(x) = \cos^{- 1}\left\{ \frac{1 - x^{2}}{1 + x^{2}} \right\}

Put x=tanθx = \tan\theta in both equation

f(θ)=cot1{3tanθtan3θ13tan2θ}=cot1{tan3θ}f(\theta) = \cot^{- 1}\left\{ \frac{3\tan\theta - \tan^{3}\theta}{1 - 3\tan^{2}\theta} \right\} = \cot^{- 1}\left\{ \tan 3\theta \right\}

f(θ)=cot1cot(π23θ)=π23θf(θ)=3f(\theta) = \cot^{- 1}{\cot\left( \frac{\pi}{2} - 3\theta \right)} = \frac{\pi}{2} - 3\theta \Rightarrow f^{'}(\theta) = - 3 ..….(i)

andg(θ)=cos1{1tan2θ1+tan2θ}=cos1(cos2θ)=2θg(\theta) = \cos^{- 1}\left\{ \frac{1 - \tan^{2}\theta}{1 + \tan^{2}\theta} \right\} = \cos^{- 1}(\cos 2\theta) = 2\theta

g(θ)=2\Rightarrow g^{'}(\theta) = 2 ….. (ii)

Nowlimxa(f(x)f(a)g(x)g(a))=limxa(f(x)f(a)xa)1limxa(g(x)g(a)xa)=f(x).1g(x)=3×12=32\lim_{x \rightarrow a}\left( \frac{f(x) - f(a)}{g(x) - g(a)} \right) = \lim_{x \rightarrow a}\left( \frac{f(x) - f(a)}{x - a} \right)\frac{1}{\lim_{x \rightarrow a}\left( \frac{g(x) - g(a)}{x - a} \right)} = f^{'}(x).\frac{1}{g^{'}(x)} = - 3 \times \frac{1}{2} = - \frac{3}{2}.