Solveeit Logo

Question

Question: If f(x) = cos\(\left\{ \frac{\pi}{2}\lbrack x\rbrack - x^{3} \right\}\), 1 \< x \< 2, and [x] = the...

If f(x) = cos{π2[x]x3}\left\{ \frac{\pi}{2}\lbrack x\rbrack - x^{3} \right\}, 1 < x < 2, and

[x] = the greatest integer ≤ x, then f´(π23)\left( \sqrt[3]{\frac{\pi}{2}} \right) is equal to-

A

0

B

3{π2}2/33\left\{ \frac{\pi}{2} \right\}^{2/3}

C

3{π2}3/23\left\{ \frac{\pi}{2} \right\}^{3/2}

D

None

Answer

0

Explanation

Solution

In x ∈(1, 2) . [x] = 1

so f(x) = cos(π2x3)\left( \frac{\pi}{2} - x^{3} \right) = sin x3

f´(x) = 3x2.cos x3

(π23)\left( \sqrt[3]{\frac{\pi}{2}} \right) = 3.(π2)2/3\left( \frac{\pi}{2} \right)^{2/3}× cosπ2\frac{\pi}{2} = 0