Solveeit Logo

Question

Question: If \(f(x) = \cos x.\cos 2x.\cos 4x.\cos 8x.\cos 16x\) then \(f^{'}\left( \frac{\pi}{4} \right)\) is...

If f(x)=cosx.cos2x.cos4x.cos8x.cos16xf(x) = \cos x.\cos 2x.\cos 4x.\cos 8x.\cos 16x then

f(π4)f^{'}\left( \frac{\pi}{4} \right) is

A

2\sqrt{2}

B

12\frac{1}{\sqrt{2}}

C

0

D

None of these

Answer

2\sqrt{2}

Explanation

Solution

f(x)=2sinx.cosx.cos2x.cos4x.cos8x.cos16x2sinx=sin32x25sinxf(x) = \frac{2\sin x.\cos x.\cos 2x.\cos 4x.\cos 8x.\cos 16x}{2\sin x} = \frac{\sin 32x}{2^{5}\sin x}

\therefore f(x)=132.32cos32x.sinxcosx.sin32xsin2xf^{'}(x) = \frac{1}{32}.\frac{32\cos 32x.\sin x - \cos x.\sin 32x}{\sin^{2}x}

\therefore f(π4)=32.1212.032.(12)2=2f^{'}\left( \frac{\pi}{4} \right) = \frac{32.\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}.0}{32.\left( \frac{1}{\sqrt{2}} \right)^{2}} = \sqrt{2}.