Solveeit Logo

Question

Question: If f(x) = cos \(\left\{ \frac{\pi}{2}\lbrack x\rbrack - x^{3} \right\}\), – 1 \< x \< 2 and [x] is t...

If f(x) = cos {π2[x]x3}\left\{ \frac{\pi}{2}\lbrack x\rbrack - x^{3} \right\}, – 1 < x < 2 and [x] is the greatest integer less than or equal to x then f ' (π23)\left( \sqrt[3]{\frac{\pi}{2}} \right) is –

A

0

B

1

C

½

D

1/2\sqrt{2}

Answer

0

Explanation

Solution

We know

1 < π23\sqrt[3]{\frac{\pi}{2}} < 2

[π23]\left\lbrack \sqrt[3]{\frac{\pi}{2}} \right\rbrack = 1

Now f(x) = cos {π2[x]x3}\left\{ \frac{\pi}{2}\lbrack x\rbrack - x^{3} \right\}

f(π23)\left( \sqrt[3]{\frac{\pi}{2}} \right) = cos {π2[π23](π23)3}\left\{ \frac{\pi}{2}\left\lbrack \sqrt[3]{\frac{\pi}{2}} \right\rbrack - \left( \sqrt[3]{\frac{\pi}{2}} \right)^{3} \right\}

= cos {π2π2}\left\{ \frac{\pi}{2} - \frac{\pi}{2} \right\}

= cos 0 = 1

f ' (π23)\left( \sqrt[3]{\frac{\pi}{2}} \right) = 0