Solveeit Logo

Question

Question: If $f(x) = \begin{vmatrix} (x-3)e^x & x & \sin x \\ (x-2)e^x & 1 & \cos x \\ (x-1)e^x & 0 & -\sin x ...

If f(x)=(x3)exxsinx(x2)ex1cosx(x1)ex0sinxf(x) = \begin{vmatrix} (x-3)e^x & x & \sin x \\ (x-2)e^x & 1 & \cos x \\ (x-1)e^x & 0 & -\sin x \end{vmatrix} then the value of Ltx0f(x)xLt_{x\to 0} |\frac{f(x)}{x}| is equal to

Answer

3

Explanation

Solution

To find the value of Ltx0f(x)xLt_{x\to 0} |\frac{f(x)}{x}|, we first need to evaluate the determinant f(x)f(x).

Given f(x)=(x3)exxsinx(x2)ex1cosx(x1)ex0sinxf(x) = \begin{vmatrix} (x-3)e^x & x & \sin x \\ (x-2)e^x & 1 & \cos x \\ (x-1)e^x & 0 & -\sin x \end{vmatrix}

Step 1: Evaluate the determinant f(x)f(x). We can factor out exe^x from the first column (C1C_1): f(x)=exx3xsinxx21cosxx10sinxf(x) = e^x \begin{vmatrix} x-3 & x & \sin x \\ x-2 & 1 & \cos x \\ x-1 & 0 & -\sin x \end{vmatrix}

Now, let's expand the determinant along the second column (C2C_2) because it contains a zero, which simplifies the calculation: f(x)=ex[xx2cosxx1sinx+1x3sinxx1sinx0x3sinxx2cosx]f(x) = e^x \left[ -x \begin{vmatrix} x-2 & \cos x \\ x-1 & -\sin x \end{vmatrix} + 1 \begin{vmatrix} x-3 & \sin x \\ x-1 & -\sin x \end{vmatrix} - 0 \begin{vmatrix} x-3 & \sin x \\ x-2 & \cos x \end{vmatrix} \right]

Calculate the 2×22 \times 2 determinants: x2cosxx1sinx=(x2)(sinx)(x1)cosx=(x2)sinx(x1)cosx\begin{vmatrix} x-2 & \cos x \\ x-1 & -\sin x \end{vmatrix} = (x-2)(-\sin x) - (x-1)\cos x = -(x-2)\sin x - (x-1)\cos x x3sinxx1sinx=(x3)(sinx)(x1)sinx=(x3)sinx(x1)sinx\begin{vmatrix} x-3 & \sin x \\ x-1 & -\sin x \end{vmatrix} = (x-3)(-\sin x) - (x-1)\sin x = -(x-3)\sin x - (x-1)\sin x

Substitute these back into the expression for f(x)f(x): f(x)=ex[x((x2)sinx(x1)cosx)+((x3)sinx(x1)sinx)]f(x) = e^x \left[ -x (-(x-2)\sin x - (x-1)\cos x) + (-(x-3)\sin x - (x-1)\sin x) \right] f(x)=ex[x(x2)sinx+x(x1)cosx(x3+x1)sinx]f(x) = e^x \left[ x(x-2)\sin x + x(x-1)\cos x - (x-3+x-1)\sin x \right] f(x)=ex[(x22x)sinx+(x2x)cosx(2x4)sinx]f(x) = e^x \left[ (x^2-2x)\sin x + (x^2-x)\cos x - (2x-4)\sin x \right] Combine the terms with sinx\sin x: f(x)=ex[(x22x2x+4)sinx+(x2x)cosx]f(x) = e^x \left[ (x^2-2x - 2x + 4)\sin x + (x^2-x)\cos x \right] f(x)=ex[(x24x+4)sinx+(x2x)cosx]f(x) = e^x \left[ (x^2-4x+4)\sin x + (x^2-x)\cos x \right] Recognize the perfect square: (x24x+4)=(x2)2(x^2-4x+4) = (x-2)^2. f(x)=ex[(x2)2sinx+x(x1)cosx]f(x) = e^x \left[ (x-2)^2 \sin x + x(x-1)\cos x \right]

Step 2: Simplify the expression f(x)x\frac{f(x)}{x}. f(x)x=ex[(x2)2sinx+x(x1)cosx]x\frac{f(x)}{x} = \frac{e^x \left[ (x-2)^2 \sin x + x(x-1)\cos x \right]}{x} Divide each term in the bracket by xx: f(x)x=ex[(x2)2sinxx+x(x1)cosxx]\frac{f(x)}{x} = e^x \left[ \frac{(x-2)^2 \sin x}{x} + \frac{x(x-1)\cos x}{x} \right] f(x)x=ex[(x2)2sinxx+(x1)cosx]\frac{f(x)}{x} = e^x \left[ (x-2)^2 \frac{\sin x}{x} + (x-1)\cos x \right]

Step 3: Evaluate the limit Ltx0f(x)xLt_{x\to 0} \frac{f(x)}{x}. Now, we apply the limit x0x \to 0: Ltx0f(x)x=Ltx0ex[(x2)2sinxx+(x1)cosx]Lt_{x\to 0} \frac{f(x)}{x} = Lt_{x\to 0} e^x \left[ (x-2)^2 \frac{\sin x}{x} + (x-1)\cos x \right]

Using the properties of limits and standard limits:

  • Ltx0ex=e0=1Lt_{x\to 0} e^x = e^0 = 1
  • Ltx0(x2)2=(02)2=4Lt_{x\to 0} (x-2)^2 = (0-2)^2 = 4
  • Ltx0sinxx=1Lt_{x\to 0} \frac{\sin x}{x} = 1 (Standard limit)
  • Ltx0(x1)=(01)=1Lt_{x\to 0} (x-1) = (0-1) = -1
  • Ltx0cosx=cos0=1Lt_{x\to 0} \cos x = \cos 0 = 1

Substitute these values into the limit expression: Ltx0f(x)x=1[(4)(1)+(1)(1)]Lt_{x\to 0} \frac{f(x)}{x} = 1 \left[ (4)(1) + (-1)(1) \right] Ltx0f(x)x=1[41]Lt_{x\to 0} \frac{f(x)}{x} = 1 \left[ 4 - 1 \right] Ltx0f(x)x=3Lt_{x\to 0} \frac{f(x)}{x} = 3

Step 4: Take the absolute value. The question asks for Ltx0f(x)xLt_{x\to 0} |\frac{f(x)}{x}|. Ltx0f(x)x=3=3Lt_{x\to 0} |\frac{f(x)}{x}| = |3| = 3.

The final answer is 3\boxed{3}.