Solveeit Logo

Question

Question: If $f(x) = \begin{vmatrix} \cos{(x + x^2)} & \sin{(x + x^2)} & -\cos{(x + x^2)} \\ \sin{(x - x^2)} &...

If f(x)=cos(x+x2)sin(x+x2)cos(x+x2)sin(xx2)cos(xx2)sin(xx2)sin2x0sin2x2f(x) = \begin{vmatrix} \cos{(x + x^2)} & \sin{(x + x^2)} & -\cos{(x + x^2)} \\ \sin{(x - x^2)} & \cos{(x - x^2)} & \sin{(x - x^2)} \\ \sin{2x} & 0 & \sin{2x^2} \end{vmatrix}, then

A

f(-2) = 0

B

f'(-1/2) = 0

C

f' (-1) = -2

D

f ''(0) = 4

Answer

f'(-1/2) = 0, f' (-1) = -2, f ''(0) = 4

Explanation

Solution

We start with

f(x)=cos(x+x2)sin(x+x2)cos(x+x2)sin(xx2)cos(xx2)sin(xx2)sin2x0sin2x2.f(x)=\begin{vmatrix} \cos(x+x^2) & \sin(x+x^2) & -\cos(x+x^2) \\ \sin(x-x^2) & \cos(x-x^2) & \sin(x-x^2) \\ \sin2x & 0 & \sin2x^2 \end{vmatrix}.

Let

u=x+x2,v=xx2,and write A=cosu,  B=sinu,  C=sinv,  D=cosv,  E=sin2x,  F=sin2x2.u=x+x^2,\quad v=x-x^2,\quad\text{and write }A=\cos u,\;B=\sin u,\;C=\sin v,\;D=\cos v,\;E=\sin2x,\;F=\sin2x^2.

Then the matrix becomes

(ABACDCE0F).\begin{pmatrix} A & B & -A\\[1mm] C & D & C\\[1mm] E & 0 & F \end{pmatrix}.

Perform the column operation: replace the 3rd column by (Column 1 + Column 3). Then

C3C1+C3:(ABAA=0CDC+C=2CE0E+F).C_3\to C_1+C_3:\quad \begin{pmatrix} A & B & A-A=0\\[1mm] C & D & C+C=2C\\[1mm] E & 0 & E+F \end{pmatrix}.

Now expanding the determinant along the first row (since the 1st row, 3rd entry is 0):

f(x)=Adet(D2C0E+F)Bdet(C2CEE+F).f(x)=A\det\begin{pmatrix}D & 2C\\[0.5mm]0 & E+F\end{pmatrix}-B\det\begin{pmatrix} C & 2C\\[0.5mm] E & E+F\end{pmatrix}.

This gives

f(x)=A[D(E+F)]B[C(E+F)2CE]=AD(E+F)BC(FE).f(x)= A\bigl[D(E+F)\bigr]-B\Bigl[C(E+F)-2C\,E\Bigr] = AD(E+F)-BC(F-E).

Now using the trigonometric identities

cosucosvsinusinv=cos(u+v),cosucosv+sinusinv=cos(uv),\cos u\,\cos v-\sin u\,\sin v=\cos(u+v),\quad \cos u\,\cos v+\sin u\,\sin v=\cos(u-v),

we write

f(x)=E[cosucosv+sinusinv]+F[cosucosvsinusinv]=Ecos(uv)+Fcos(u+v).f(x)= E\bigl[\cos u\,\cos v+\sin u\,\sin v\bigr]+F\bigl[\cos u\,\cos v-\sin u\,\sin v\bigr] = E\cos(u-v)+ F\cos(u+v).

But note that

uv=(x+x2)(xx2)=2x2,u+v=(x+x2)+(xx2)=2x.u-v=(x+x^2)-(x-x^2)=2x^2,\quad u+v=(x+x^2)+(x-x^2)=2x.

So we have

f(x)=sin2xcos2x2+sin2x2cos2x.f(x)=\sin2x\cos2x^2+\sin2x^2\cos2x.

Using the sine addition formula

sinαcosβ+cosαsinβ=sin(α+β),\sin\alpha\,\cos\beta+\cos\alpha\,\sin\beta=\sin(\alpha+\beta),

with α=2x\alpha=2x and β=2x2\beta=2x^2, we obtain

f(x)=sin(2x+2x2).f(x)=\sin(2x+2x^2).

Now we check the options:

  1. f(2)f(-2):
    f(2)=sin(2(2)+2(2)2)=sin(4+8)=sin(4)f(-2)=\sin(2(-2)+2(-2)^2)=\sin(-4+8)=\sin(4) which is generally nonzero.

  2. f(12)f'(-\tfrac12):
    Differentiating,

    f(x)=cos(2x+2x2)(2+4x).f'(x)=\cos(2x+2x^2)\,(2+4x).

    Thus,

    f(12)=cos(2(12)+2(14))(2+4(12))=cos(1+0.5)(22)=cos(0.5)0=0.f'\Bigl(-\tfrac12\Bigr)=\cos\Bigl(2(-\tfrac12)+2(\tfrac14)\Bigr)\,(2+4(-\tfrac12)) =\cos(-1+0.5)\,(2-2) =\cos(-0.5)\cdot 0=0.
  3. f(1)f'(-1):

    f(1)=cos(2(1)+2(1))(2+4(1))=cos(2+2)(24)=cos(0)(2)=1(2)=2.f'(-1)=\cos(2(-1)+2(1))\,(2+4(-1)) =\cos(-2+2)\,(2-4) =\cos(0)\cdot(-2) = 1\cdot(-2)=-2.
  4. f(0)f''(0):
    First, f(0)=sin(0)=0.f(0)=\sin(0)=0.
    We have

    f(x)=cos(2x+2x2)(2+4x).f'(x)=\cos(2x+2x^2)(2+4x).

    Then,

    f(x)=sin(2x+2x2)(2+4x)2+4cos(2x+2x2).f''(x)=-\sin(2x+2x^2)(2+4x)^2+4\cos(2x+2x^2).

    At x=0x=0 we get

    f(0)=sin(0)(2)2+4cos(0)=0+41=4.f''(0)=-\sin(0)\cdot(2)^2+4\cos(0)=0+4\cdot1=4.

Thus, the correct statements are options 2, 3, and 4.