Solveeit Logo

Question

Question: If $f(x) = \begin{cases} (x^2/a)-a, \text{ when } x < a \\ 0, \text{ when } x = a, \text{ then }\\ ...

If

f(x)={(x2/a)a, when x<a0, when x=a, then a(x2/a), when x>af(x) = \begin{cases} (x^2/a)-a, \text{ when } x < a \\ 0, \text{ when } x = a, \text{ then }\\ a-(x^2/a), \text{ when } x > a \end{cases}

A

limxaf(x)=a\lim_{x \to a} f(x) = a

B

f(x)f(x) is continuous at x=ax=a

C

f(x)f(x) is discontinuous at x=ax=a

D

None of these

Answer

(b)

Explanation

Solution

To determine the correct answer, we need to analyze the continuity of the function f(x)f(x) at x=ax=a.

First, we find the left-hand limit (LHL) as xx approaches aa:

limxaf(x)=limxa(x2aa)=a2aa=aa=0\lim_{x \to a^-} f(x) = \lim_{x \to a^-} (\frac{x^2}{a} - a) = \frac{a^2}{a} - a = a - a = 0

Next, we find the right-hand limit (RHL) as xx approaches aa:

limxa+f(x)=limxa+(ax2a)=aa2a=aa=0\lim_{x \to a^+} f(x) = \lim_{x \to a^+} (a - \frac{x^2}{a}) = a - \frac{a^2}{a} = a - a = 0

Since LHL = RHL = 0, the limit exists and limxaf(x)=0\lim_{x \to a} f(x) = 0.

Now, we check the value of the function at x=ax=a:

f(a)=0f(a) = 0

Since limxaf(x)=f(a)=0\lim_{x \to a} f(x) = f(a) = 0, the function is continuous at x=ax=a. Therefore, option (b) is correct.