Solveeit Logo

Question

Question: If $f(x) = \begin{cases} x + \{x\} + x \sin\{x\} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \en...

If f(x)={x+{x}+xsin{x}for x00for x=0f(x) = \begin{cases} x + \{x\} + x \sin\{x\} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}

where {.} denotes the fractional part function, then:

A

f is continuous & differentiable at x = 0

B

f is continuous but not differentiable at x = 0

C

f is continuous & differentiable at x = 2

D

none of these

Answer

none of these

Explanation

Solution

The function is given by f(x)=x+{x}+xsin{x}f(x) = x + \{x\} + x \sin\{x\} for x0x \neq 0 and f(0)=0f(0) = 0. The fractional part function {x}\{x\} is defined as xxx - \lfloor x \rfloor.

Continuity at x=0x=0: For continuity at x=0x=0, we require limx0f(x)=f(0)\lim_{x \to 0} f(x) = f(0). We are given f(0)=0f(0) = 0.

The right-hand limit: As x0+x \to 0^+, x=0\lfloor x \rfloor = 0, so {x}=x\{x\} = x. limx0+f(x)=limx0+(x+x+xsinx)=limx0+(2x+xsinx)=0\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x + x + x \sin x) = \lim_{x \to 0^+} (2x + x \sin x) = 0 The left-hand limit: As x0x \to 0^-, x=1\lfloor x \rfloor = -1, so {x}=x(1)=x+1\{x\} = x - (-1) = x+1. limx0f(x)=limx0(x+(x+1)+xsin(x+1))=0+(0+1)+0sin(0+1)=1\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x + (x+1) + x \sin(x+1)) = 0 + (0+1) + 0 \sin(0+1) = 1 Since limx0+f(x)limx0f(x)\lim_{x \to 0^+} f(x) \neq \lim_{x \to 0^-} f(x), the limit limx0f(x)\lim_{x \to 0} f(x) does not exist. Thus, ff is not continuous at x=0x=0.

Continuity at x=2x=2: For continuity at x=2x=2, we require limx2f(x)=f(2)\lim_{x \to 2} f(x) = f(2). For x=2x=2, 2=2\lfloor 2 \rfloor = 2, so {2}=22=0\{2\} = 2 - 2 = 0. f(2)=2+{2}+2sin{2}=2+0+2sin(0)=2f(2) = 2 + \{2\} + 2 \sin\{2\} = 2 + 0 + 2 \sin(0) = 2

The right-hand limit: As x2+x \to 2^+, x=2\lfloor x \rfloor = 2, so {x}=x2\{x\} = x-2. limx2+f(x)=limx2+(x+(x2)+xsin(x2))=2+(22)+2sin(22)=2+0+0=2\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x + (x-2) + x \sin(x-2)) = 2 + (2-2) + 2 \sin(2-2) = 2 + 0 + 0 = 2 The left-hand limit: As x2x \to 2^-, x=1\lfloor x \rfloor = 1, so {x}=x1\{x\} = x-1. limx2f(x)=limx2(x+(x1)+xsin(x1))=2+(21)+2sin(21)=2+1+2sin(1)=3+2sin(1)\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (x + (x-1) + x \sin(x-1)) = 2 + (2-1) + 2 \sin(2-1) = 2 + 1 + 2 \sin(1) = 3 + 2 \sin(1) Since limx2f(x)=3+2sin(1)f(2)=2\lim_{x \to 2^-} f(x) = 3 + 2 \sin(1) \neq f(2) = 2, ff is not continuous at x=2x=2.

Since ff is not continuous at x=0x=0 and x=2x=2, the first three options are false. The correct option is none of these.