Solveeit Logo

Question

Question: If f(x) = $\begin{cases} max\{[x],x\} ; & 0<x<\frac{\pi}{4} \\ b; & x = 0 \\ min\{sin x, cos x\}; & ...

If f(x) = {max{[x],x};0<x<π4b;x=0min{sinx,cosx};π4<x<0\begin{cases} max\{[x],x\} ; & 0<x<\frac{\pi}{4} \\ b; & x = 0 \\ min\{sin x, cos x\}; & -\frac{\pi}{4}<x<0 \end{cases} is continuous at x = 0, then f'(0) is (where [.] represents greatest integer function)

Answer

1

Explanation

Solution

The problem asks us to find the derivative of a piecewise function at x=0x=0, given that the function is continuous at x=0x=0.

Step 1: Determine the value of 'b' using the continuity condition at x = 0. For a function f(x)f(x) to be continuous at x=0x=0, the following condition must be met: limx0f(x)=limx0+f(x)=f(0)\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0)

  1. Evaluate f(0)f(0): From the given definition, f(0)=bf(0) = b.

  2. Evaluate the right-hand limit, limx0+f(x)\lim_{x \to 0^+} f(x): For 0<x<π40 < x < \frac{\pi}{4}, f(x)=max{[x],x}f(x) = \max\{[x], x\}. Since 0<x<π40 < x < \frac{\pi}{4} (which is approximately 0<x<0.7850 < x < 0.785), xx is in the interval (0,1)(0, 1). For any x(0,1)x \in (0, 1), the greatest integer less than or equal to xx, [x][x], is 00. So, for 0<x<π40 < x < \frac{\pi}{4}, f(x)=max{0,x}f(x) = \max\{0, x\}. Since x>0x > 0 in this interval, max{0,x}=x\max\{0, x\} = x. Therefore, limx0+f(x)=limx0+x=0\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x = 0.

  3. Evaluate the left-hand limit, limx0f(x)\lim_{x \to 0^-} f(x): For π4<x<0-\frac{\pi}{4} < x < 0, f(x)=min{sinx,cosx}f(x) = \min\{\sin x, \cos x\}. In the interval (π4,0)(-\frac{\pi}{4}, 0), xx lies in the fourth quadrant. In the fourth quadrant:

    • sinx<0\sin x < 0 (sine is negative)
    • cosx>0\cos x > 0 (cosine is positive) Since sinx\sin x is negative and cosx\cos x is positive, it must be that sinx<cosx\sin x < \cos x. So, for π4<x<0-\frac{\pi}{4} < x < 0, f(x)=min{sinx,cosx}=sinxf(x) = \min\{\sin x, \cos x\} = \sin x. Therefore, limx0f(x)=limx0sinx=sin(0)=0\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \sin x = \sin(0) = 0.
  4. Apply the continuity condition: From the above evaluations, we have b=0=0b = 0 = 0. Thus, the value of bb is 00.

Now, the function f(x)f(x) can be written as: f(x)={x;0<x<π40;x=0sinx;π4<x<0f(x) = \begin{cases} x ; & 0<x<\frac{\pi}{4} \\ 0; & x = 0 \\ \sin x; & -\frac{\pi}{4}<x<0 \end{cases}

Step 2: Calculate f(0)f'(0) using the definition of the derivative. For f(0)f'(0) to exist, the left-hand derivative (f(0)f'(0^-)) and the right-hand derivative (f(0+)f'(0^+)) must exist and be equal.

  1. Calculate the right-hand derivative, f(0+)f'(0^+): f(0+)=limh0+f(0+h)f(0)hf'(0^+) = \lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} For small h>0h > 0, f(h)=hf(h) = h (from the first case of the function definition). f(0)=0f(0) = 0. f(0+)=limh0+h0h=limh0+1=1f'(0^+) = \lim_{h \to 0^+} \frac{h - 0}{h} = \lim_{h \to 0^+} 1 = 1.

  2. Calculate the left-hand derivative, f(0)f'(0^-): f(0)=limh0f(0+h)f(0)hf'(0^-) = \lim_{h \to 0^-} \frac{f(0+h) - f(0)}{h} For small h<0h < 0, f(h)=sin(h)f(h) = \sin(h) (from the third case of the function definition). f(0)=0f(0) = 0. f(0)=limh0sin(h)0h=limh0sin(h)hf'(0^-) = \lim_{h \to 0^-} \frac{\sin(h) - 0}{h} = \lim_{h \to 0^-} \frac{\sin(h)}{h}. This is a standard limit, which evaluates to 11. f(0)=1f'(0^-) = 1.

  3. Conclusion: Since f(0+)=f(0)=1f'(0^+) = f'(0^-) = 1, the derivative f(0)f'(0) exists and is equal to 11.

The final answer is 1\boxed{1}.

Explanation of the solution:

  1. Continuity at x=0: The limits from the left and right, and the function value at x=0x=0, must be equal.
    • For 0<x<π40 < x < \frac{\pi}{4}, [x]=0[x]=0, so f(x)=max{0,x}=xf(x) = \max\{0,x\} = x. limx0+f(x)=0\lim_{x \to 0^+} f(x) = 0.
    • For π4<x<0-\frac{\pi}{4} < x < 0, sinx<cosx\sin x < \cos x, so f(x)=min{sinx,cosx}=sinxf(x) = \min\{\sin x, \cos x\} = \sin x. limx0f(x)=sin(0)=0\lim_{x \to 0^-} f(x) = \sin(0) = 0.
    • Given f(0)=bf(0)=b. For continuity, 0=0=b0 = 0 = b, so b=0b=0.
  2. Differentiability at x=0: The left-hand derivative and right-hand derivative must be equal.
    • Right-hand derivative: f(0+)=limh0+f(h)f(0)h=limh0+h0h=1f'(0^+) = \lim_{h \to 0^+} \frac{f(h)-f(0)}{h} = \lim_{h \to 0^+} \frac{h-0}{h} = 1.
    • Left-hand derivative: f(0)=limh0f(h)f(0)h=limh0sinh0h=1f'(0^-) = \lim_{h \to 0^-} \frac{f(h)-f(0)}{h} = \lim_{h \to 0^-} \frac{\sin h - 0}{h} = 1.
    • Since both derivatives are equal to 1, f(0)=1f'(0)=1.