Solveeit Logo

Question

Question: If $f(x) = ax^2 + bx + c$ and $g(x) = -ax^2 + bx + c$ where $ac \neq 0$ then $f(x), g(x) = 0$ has:...

If f(x)=ax2+bx+cf(x) = ax^2 + bx + c and g(x)=ax2+bx+cg(x) = -ax^2 + bx + c where ac0ac \neq 0 then f(x),g(x)=0f(x), g(x) = 0 has:

A

Two real roots

B

four real roots

C

atleast two real roots

D

atmost two real roots

Answer

atleast two real roots

Explanation

Solution

The discriminants are Δf=b24ac\Delta_f = b^2 - 4ac and Δg=b2+4ac\Delta_g = b^2 + 4ac. Since ac0ac \neq 0, either ac<0ac < 0 or ac>0ac > 0. If ac<0ac < 0, then 4ac>0-4ac > 0, so Δf=b24ac>0\Delta_f = b^2 - 4ac > 0. Thus f(x)=0f(x)=0 has two distinct real roots. If ac>0ac > 0, then 4ac>04ac > 0, so Δg=b2+4ac>0\Delta_g = b^2 + 4ac > 0. Thus g(x)=0g(x)=0 has two distinct real roots. In either case, at least one of the equations has two distinct real roots.