Solveeit Logo

Question

Question: If \(f(x) = a\cos(bx + c) + d,f(x)\) is finite, then the value of a is...

If f(x)=acos(bx+c)+d,f(x)f(x) = a\cos(bx + c) + d,f(x) is finite, then the value of a is

A

3

B

5

C

2

D

Any real number

Answer

2

Explanation

Solution

limx(x4+ax3+3x2+bx+2)\lim _ { x \rightarrow \infty } \left( \sqrt { x ^ { 4 } + a x ^ { 3 } + 3 x ^ { 2 } + b x + 2 } \right)

x4+2x3cx2+3xd)- \sqrt { \left. x ^ { 4 } + 2 x ^ { 3 } - c x ^ { 2 } + 3 x - d \right) }

= limx{(x4+ax3+3x2+bx+2)x4+ax3+3x2+bx+2\lim _ { x \rightarrow \infty } \left\{ \frac { \left( x ^ { 4 } + a x ^ { 3 } + 3 x ^ { 2 } + b x + 2 \right) } { \sqrt { x ^ { 4 } + a x ^ { 3 } + 3 x ^ { 2 } + b x + 2 } } \right.

limx{(a2)x3+(3+c)x2x4+ax3+3x2+bx+2\lim _ { x \rightarrow \infty } \left\{ \frac { ( a - 2 ) x ^ { 3 } + ( 3 + c ) x ^ { 2 } } { \sqrt { x ^ { 4 } + a x ^ { 3 } + 3 x ^ { 2 } + b x + 2 } } \right.

Clearly, the degree of the polynomial in the numerator is 3 and that of denominator is 2. Therefore, for the limit to be finite, we must have, a – 2 = 0 ⇒ a = 2