Solveeit Logo

Question

Question: If \(f(x) = a\cos(bx + c) + d,\) then range of \(f(x)\) is...

If f(x)=acos(bx+c)+d,f(x) = a\cos(bx + c) + d, then range of f(x)f(x) is

A

[d+a,d+2a]\lbrack d + a,d + 2a\rbrack

B

[ad,a+d]\lbrack a - d,a + d\rbrack

C

[d+a,ad]\lbrack d + a,a - d\rbrack

D

[da,d+a]\lbrack d - a,d + a\rbrack

Answer

[da,d+a]\lbrack d - a,d + a\rbrack

Explanation

Solution

f(x)=acos(bx+c)+df(x) = a\cos(bx + c) + d ….. (i)

For minimum cos(bx+c)=1\cos(bx + c) = - 1

from (i), f(x)=a+d=(da)f(x) = - a + d = (d - a),

for maximum cos(bx+c)=1\cos(bx + c) = 1

from (i), f(x)=a+d=(d+a)f(x) = a + d = (d + a)

∴ Range of f(x)=[da,d+a]f(x) = \lbrack d - a,d + a\rbrack.