Solveeit Logo

Question

Question: If $f(x)= (4 \cos^4 x - 2 \cos^2 x - \frac{1}{2} \cos 4x + 2 \sin^2 x - x^9)^{\frac{1}{9}}$ then t...

If

f(x)=(4cos4x2cos2x12cos4x+2sin2xx9)19f(x)= (4 \cos^4 x - 2 \cos^2 x - \frac{1}{2} \cos 4x + 2 \sin^2 x - x^9)^{\frac{1}{9}}

then the value of f(f(2))f (f (2)) is equal to

Answer

2

Explanation

Solution

To find the value of f(f(2))f(f(2)), we first need to simplify the expression for f(x)f(x).

The given function is f(x)=(4cos4x2cos2x12cos4x+2sin2xx9)19f(x)= (4 \cos^4 x - 2 \cos^2 x - \frac{1}{2} \cos 4x + 2 \sin^2 x - x^9)^{\frac{1}{9}}.

Let's simplify the expression inside the parenthesis, E=4cos4x2cos2x12cos4x+2sin2xx9E = 4 \cos^4 x - 2 \cos^2 x - \frac{1}{2} \cos 4x + 2 \sin^2 x - x^9.

We use the following trigonometric identities:

  1. cos2x=2cos2x1    2cos2x=1+cos2x\cos 2x = 2 \cos^2 x - 1 \implies 2 \cos^2 x = 1 + \cos 2x
  2. cos2x=12sin2x    2sin2x=1cos2x\cos 2x = 1 - 2 \sin^2 x \implies 2 \sin^2 x = 1 - \cos 2x
  3. cos4x=2cos22x1\cos 4x = 2 \cos^2 2x - 1

Now, substitute these into the expression EE:

  • 4cos4x=(2cos2x)2=(1+cos2x)2=1+2cos2x+cos22x4 \cos^4 x = (2 \cos^2 x)^2 = (1 + \cos 2x)^2 = 1 + 2 \cos 2x + \cos^2 2x
  • 2cos2x=(1+cos2x)=1cos2x-2 \cos^2 x = -(1 + \cos 2x) = -1 - \cos 2x
  • 12cos4x=12(2cos22x1)=cos22x+12-\frac{1}{2} \cos 4x = -\frac{1}{2} (2 \cos^2 2x - 1) = -\cos^2 2x + \frac{1}{2}
  • 2sin2x=1cos2x2 \sin^2 x = 1 - \cos 2x
  • x9-x^9 remains as is.

Substitute these simplified terms back into EE: E=(1+2cos2x+cos22x)+(1cos2x)+(cos22x+12)+(1cos2x)x9E = (1 + 2 \cos 2x + \cos^2 2x) + (-1 - \cos 2x) + (-\cos^2 2x + \frac{1}{2}) + (1 - \cos 2x) - x^9

Group terms:

  • Constant terms: 11+12+1=321 - 1 + \frac{1}{2} + 1 = \frac{3}{2}
  • Terms with cos2x\cos 2x: 2cos2xcos2xcos2x=02 \cos 2x - \cos 2x - \cos 2x = 0
  • Terms with cos22x\cos^2 2x: cos22xcos22x=0\cos^2 2x - \cos^2 2x = 0
  • Term with x9x^9: x9-x^9

So, the expression EE simplifies to: E=32x9E = \frac{3}{2} - x^9

Therefore, the function f(x)f(x) becomes: f(x)=(32x9)19f(x) = \left(\frac{3}{2} - x^9\right)^{\frac{1}{9}}

Now, we need to find f(f(2))f(f(2)). First, calculate f(2)f(2): f(2)=(3229)19f(2) = \left(\frac{3}{2} - 2^9\right)^{\frac{1}{9}}

Let y=f(2)y = f(2). So y=(3229)19y = \left(\frac{3}{2} - 2^9\right)^{\frac{1}{9}}. We need to find f(y)f(y). Substitute yy into the simplified f(x)f(x): f(y)=(32y9)19f(y) = \left(\frac{3}{2} - y^9\right)^{\frac{1}{9}}

Now, substitute the expression for y9y^9: Since y=(3229)19y = \left(\frac{3}{2} - 2^9\right)^{\frac{1}{9}}, then y9=3229y^9 = \frac{3}{2} - 2^9.

Substitute this into the expression for f(y)f(y): f(y)=(32(3229))19f(y) = \left(\frac{3}{2} - \left(\frac{3}{2} - 2^9\right)\right)^{\frac{1}{9}} f(y)=(3232+29)19f(y) = \left(\frac{3}{2} - \frac{3}{2} + 2^9\right)^{\frac{1}{9}} f(y)=(29)19f(y) = (2^9)^{\frac{1}{9}} f(y)=2f(y) = 2

Thus, f(f(2))=2f(f(2)) = 2.