Question
Question: If $f(x)= (4 \cos^4 x - 2 \cos^2 x - \frac{1}{2} \cos 4x + 2 \sin^2 x - x^9)^{\frac{1}{9}}$ then t...
If
f(x)=(4cos4x−2cos2x−21cos4x+2sin2x−x9)91
then the value of f(f(2)) is equal to

2
Solution
To find the value of f(f(2)), we first need to simplify the expression for f(x).
The given function is f(x)=(4cos4x−2cos2x−21cos4x+2sin2x−x9)91.
Let's simplify the expression inside the parenthesis, E=4cos4x−2cos2x−21cos4x+2sin2x−x9.
We use the following trigonometric identities:
- cos2x=2cos2x−1⟹2cos2x=1+cos2x
- cos2x=1−2sin2x⟹2sin2x=1−cos2x
- cos4x=2cos22x−1
Now, substitute these into the expression E:
- 4cos4x=(2cos2x)2=(1+cos2x)2=1+2cos2x+cos22x
- −2cos2x=−(1+cos2x)=−1−cos2x
- −21cos4x=−21(2cos22x−1)=−cos22x+21
- 2sin2x=1−cos2x
- −x9 remains as is.
Substitute these simplified terms back into E: E=(1+2cos2x+cos22x)+(−1−cos2x)+(−cos22x+21)+(1−cos2x)−x9
Group terms:
- Constant terms: 1−1+21+1=23
- Terms with cos2x: 2cos2x−cos2x−cos2x=0
- Terms with cos22x: cos22x−cos22x=0
- Term with x9: −x9
So, the expression E simplifies to: E=23−x9
Therefore, the function f(x) becomes: f(x)=(23−x9)91
Now, we need to find f(f(2)). First, calculate f(2): f(2)=(23−29)91
Let y=f(2). So y=(23−29)91. We need to find f(y). Substitute y into the simplified f(x): f(y)=(23−y9)91
Now, substitute the expression for y9: Since y=(23−29)91, then y9=23−29.
Substitute this into the expression for f(y): f(y)=(23−(23−29))91 f(y)=(23−23+29)91 f(y)=(29)91 f(y)=2
Thus, f(f(2))=2.