Solveeit Logo

Question

Question: If f(x) = 3x + 5 and g(x) = $x^3$ – 7, then find fog(x)....

If f(x) = 3x + 5 and g(x) = x3x^3 – 7, then find fog(x).

A

-132 + 225x - 135x2x^2 + 27x3x^3

B

3x3x^3 + 16

C

132 + 225x + 135x2x^2 + 27x3x^3

D

3x3x^3 - 16

Answer

3x3x^3 - 16

Explanation

Solution

To find fog(x)fog(x), we need to substitute the function g(x)g(x) into the function f(x)f(x). This means wherever 'x' appears in f(x)f(x), we replace it with the entire expression for g(x)g(x).

Given: f(x)=3x+5f(x) = 3x + 5 g(x)=x37g(x) = x^3 - 7

We need to find fog(x)fog(x), which is defined as f(g(x))f(g(x)).

Substitute g(x)g(x) into f(x)f(x): f(g(x))=f(x37)f(g(x)) = f(x^3 - 7)

Now, replace 'x' in the expression for f(x)f(x) with (x37)(x^3 - 7): f(x37)=3(x37)+5f(x^3 - 7) = 3(x^3 - 7) + 5

Expand and simplify the expression: 3(x37)+5=3x33×7+53(x^3 - 7) + 5 = 3x^3 - 3 \times 7 + 5 =3x321+5= 3x^3 - 21 + 5 =3x316= 3x^3 - 16

Therefore, fog(x)=3x316fog(x) = 3x^3 - 16.