Solveeit Logo

Question

Question: If f(x) = 3f \(\left( \frac{x^{2}}{3} \right)\) + f(3– x<sup>2</sup>) " x Î(–3, 4) where f"(x) \> 0 ...

If f(x) = 3f (x23)\left( \frac{x^{2}}{3} \right) + f(3– x2) " x Î(–3, 4) where f"(x) > 0 " x Î (–3, 4), then f(x) is

A

Increasing in (32,4)\left( \frac{3}{2},4 \right)

B

Decreasing in (3,32)\left( - 3, - \frac{3}{2} \right)

C

Increasing in (32,0)\left( - \frac{3}{2},0 \right)

D

Decreasing in (0,32)\left( 0,\frac{3}{2} \right)

Answer

Increasing in (32,4)\left( \frac{3}{2},4 \right)

Explanation

Solution

f'(x) = 3f '(x23)2x3\left( \frac{x^{2}}{3} \right)\frac{2x}{3} – 2x f '(3 – x2)

= 2x [f ' (x23)\left( \frac{x^{2}}{3} \right)– f '(3 – x2)]

f '(x) = 0 ̃ x23\frac{x^{2}}{3} = 3 – x2 or x = ± 3/2

f "(x) > 0 ̃ f '(x) is increasing