Solveeit Logo

Question

Question: If f(x) = 2x + cot<sup>–1</sup>x + log (\(\sqrt{1 + x^{2}} - x\)) then f(x)...

If f(x) = 2x + cot–1x + log (1+x2x\sqrt{1 + x^{2}} - x) then f(x)

A

Increases is (–¥, ¥)

B

Decreases in (0, ¥)

C

Neither increases nor decreases in (0, ¥)

D

Some time increases some time decreases

Answer

Increases is (–¥, ¥)

Explanation

Solution

f(x) = 2x + cot–1x + log(1+x2x)(\sqrt{1 + x^{2}} - x)

f '(x) = 2 – 11+x2\frac{1}{1 + x^{2}} + 11+x2x×2x21+x21\frac{1}{\sqrt{1 + x^{2}} - x} \times \frac{2x}{2\sqrt{1 + x^{2}}} - 1

= 2 – 11+x2+11+x2x×x1+x21+x2\frac{1}{1 + x^{2}} + \frac{1}{\sqrt{1 + x^{2}} - x} \times \frac{x - \sqrt{1 + x^{2}}}{\sqrt{1 + x^{2}}}

= 2 – 11+x211+x2\frac{1}{1 + x^{2}} - \frac{1}{\sqrt{1 + x^{2}}}

Q 11+x21\frac{1}{1 + x^{2}} \leq 1 & 11+x21\frac{1}{\sqrt{1 + x^{2}}} \leq 1

\ 2 –11+x211+x2>0\frac{1}{1 + x^{2}} - \frac{1}{\sqrt{1 + x^{2}}} > 0

\ f '(x) > 0

\ x Î R