Solveeit Logo

Question

Question: If \(f(x) = (2x-3\pi)^{25} + \frac{4}{3}x + \cos x\) and \(g(x)\) is inverse of \(f(x)\) then find \...

If f(x)=(2x3π)25+43x+cosxf(x) = (2x-3\pi)^{25} + \frac{4}{3}x + \cos x and g(x)g(x) is inverse of f(x)f(x) then find ddx(g(x))\frac{d}{dx}(g(x)) at x=2πx = 2\pi.

Answer

37\frac{3}{7}

Explanation

Solution

Let f(x)=(2x3π)25+43x+cosxf(x) = (2x-3\pi)^{25} + \frac{4}{3}x + \cos x. We are given that g(x)g(x) is the inverse of f(x)f(x). We need to find ddx(g(x))\frac{d}{dx}(g(x)) at x=2πx = 2\pi, which is g(2π)g'(2\pi).

The formula for the derivative of an inverse function states that if gg is the inverse of ff, then g(y)=1f(x)g'(y) = \frac{1}{f'(x)} where y=f(x)y = f(x). In this problem, we want to find g(2π)g'(2\pi). So, we need to find a value x0x_0 such that f(x0)=2πf(x_0) = 2\pi.

Let's substitute x=3π2x = \frac{3\pi}{2} into f(x)f(x): f(3π2)=(2(3π2)3π)25+43(3π2)+cos(3π2)f\left(\frac{3\pi}{2}\right) = \left(2\left(\frac{3\pi}{2}\right) - 3\pi\right)^{25} + \frac{4}{3}\left(\frac{3\pi}{2}\right) + \cos\left(\frac{3\pi}{2}\right) f(3π2)=(3π3π)25+12π6+0f\left(\frac{3\pi}{2}\right) = (3\pi - 3\pi)^{25} + \frac{12\pi}{6} + 0 f(3π2)=(0)25+2π+0f\left(\frac{3\pi}{2}\right) = (0)^{25} + 2\pi + 0 f(3π2)=2πf\left(\frac{3\pi}{2}\right) = 2\pi So, we have found that x0=3π2x_0 = \frac{3\pi}{2} such that f(x0)=2πf(x_0) = 2\pi.

Now, we need to find the derivative of f(x)f(x), denoted as f(x)f'(x). f(x)=ddx((2x3π)25+43x+cosx)f'(x) = \frac{d}{dx}\left((2x-3\pi)^{25} + \frac{4}{3}x + \cos x\right) Using the power rule and chain rule: f(x)=25(2x3π)24ddx(2x3π)+ddx(43x)+ddx(cosx)f'(x) = 25(2x-3\pi)^{24} \cdot \frac{d}{dx}(2x-3\pi) + \frac{d}{dx}\left(\frac{4}{3}x\right) + \frac{d}{dx}(\cos x) f(x)=25(2x3π)242+43sinxf'(x) = 25(2x-3\pi)^{24} \cdot 2 + \frac{4}{3} - \sin x f(x)=50(2x3π)24+43sinxf'(x) = 50(2x-3\pi)^{24} + \frac{4}{3} - \sin x

Next, we evaluate f(x)f'(x) at x0=3π2x_0 = \frac{3\pi}{2}: f(3π2)=50(2(3π2)3π)24+43sin(3π2)f'\left(\frac{3\pi}{2}\right) = 50\left(2\left(\frac{3\pi}{2}\right)-3\pi\right)^{24} + \frac{4}{3} - \sin\left(\frac{3\pi}{2}\right) f(3π2)=50(3π3π)24+43(1)f'\left(\frac{3\pi}{2}\right) = 50(3\pi-3\pi)^{24} + \frac{4}{3} - (-1) f(3π2)=50(0)24+43+1f'\left(\frac{3\pi}{2}\right) = 50(0)^{24} + \frac{4}{3} + 1 f(3π2)=0+43+33f'\left(\frac{3\pi}{2}\right) = 0 + \frac{4}{3} + \frac{3}{3} f(3π2)=73f'\left(\frac{3\pi}{2}\right) = \frac{7}{3}

Finally, we use the inverse function derivative formula: g(2π)=1f(x0)=1f(3π/2)g'(2\pi) = \frac{1}{f'(x_0)} = \frac{1}{f'(3\pi/2)} g(2π)=17/3g'(2\pi) = \frac{1}{7/3} g(2π)=37g'(2\pi) = \frac{3}{7}