Question
Question: If \(f(x) = (2x-3\pi)^{25} + \frac{4}{3}x + \cos x\) and \(g(x)\) is inverse of \(f(x)\) then find \...
If f(x)=(2x−3π)25+34x+cosx and g(x) is inverse of f(x) then find dxd(g(x)) at x=2π.

73
Solution
Let f(x)=(2x−3π)25+34x+cosx. We are given that g(x) is the inverse of f(x). We need to find dxd(g(x)) at x=2π, which is g′(2π).
The formula for the derivative of an inverse function states that if g is the inverse of f, then g′(y)=f′(x)1 where y=f(x). In this problem, we want to find g′(2π). So, we need to find a value x0 such that f(x0)=2π.
Let's substitute x=23π into f(x): f(23π)=(2(23π)−3π)25+34(23π)+cos(23π) f(23π)=(3π−3π)25+612π+0 f(23π)=(0)25+2π+0 f(23π)=2π So, we have found that x0=23π such that f(x0)=2π.
Now, we need to find the derivative of f(x), denoted as f′(x). f′(x)=dxd((2x−3π)25+34x+cosx) Using the power rule and chain rule: f′(x)=25(2x−3π)24⋅dxd(2x−3π)+dxd(34x)+dxd(cosx) f′(x)=25(2x−3π)24⋅2+34−sinx f′(x)=50(2x−3π)24+34−sinx
Next, we evaluate f′(x) at x0=23π: f′(23π)=50(2(23π)−3π)24+34−sin(23π) f′(23π)=50(3π−3π)24+34−(−1) f′(23π)=50(0)24+34+1 f′(23π)=0+34+33 f′(23π)=37
Finally, we use the inverse function derivative formula: g′(2π)=f′(x0)1=f′(3π/2)1 g′(2π)=7/31 g′(2π)=73