Solveeit Logo

Question

Question: If f(x) = 2<sup>x</sup> and g(x) = 3<sup>x</sup>, then \(\frac{f'(0) - g'(0)}{1 + f'(0)g'(0)}\) =...

If f(x) = 2x and g(x) = 3x, then f(0)g(0)1+f(0)g(0)\frac{f'(0) - g'(0)}{1 + f'(0)g'(0)} =

A

log231+log6\frac{\log\frac{2}{3}}{1 + \log 6}

B

log61+log6\frac{\log 6}{1 + \log 6}

C

log231+log2log3\frac{\log\frac{2}{3}}{1 + \log 2\log 3}

D

0

Answer

log231+log2log3\frac{\log\frac{2}{3}}{1 + \log 2\log 3}

Explanation

Solution

f(x) = 2x

⇒ f ′(x) = 2x log 2

⇒ f ′(0) = log 2

g(x) = 3x

⇒ g ′(x) = 3x log 3

⇒ g ′(0) = log 3

= (log 2 – log 3) / (1 + log 2 log 3)