Solveeit Logo

Question

Question: If f(x) = \(1/\sqrt{2}\)is continuous at x = 0, then -...

If f(x) = 1/21/\sqrt{2}is continuous at

x = 0, then -

A

a = limxax3a3x2a2=\lim_{x \rightarrow a}\frac{x^{3} - a^{3}}{x^{2} - a^{2}} =, b = 3a2\frac{3a}{2}

B

a = limh0x+hxh=\lim_{h \rightarrow 0}\frac{\sqrt{x + h} - \sqrt{x}}{h} =, b = 1/2x1/2\sqrt{x}

C

a = 1/2h1/2\sqrt{h} , b = limαβsin2αsin2βα2β2\lim_{\alpha \rightarrow \beta}\frac{\sin^{2}\alpha - \sin^{2}\beta}{\alpha^{2} - \beta^{2}}

D

a = sinββ\frac{\sin\beta}{\beta}, b = sin2β2β\frac{\sin 2\beta}{2\beta}

Answer

a = limh0x+hxh=\lim_{h \rightarrow 0}\frac{\sqrt{x + h} - \sqrt{x}}{h} =, b = 1/2x1/2\sqrt{x}

Explanation

Solution

If continuous at x = 0 then

b = limx0\lim _ { x \rightarrow 0 } ,

b = ea & b = limx0\lim _ { x \rightarrow 0 } etan2xtan3x\mathrm { e } ^ { \frac { \tan 2 \mathrm { x } } { \tan 3 \mathrm { x } } }

⇒ b = e2/3

so ea = e2/3 = b ⇒ a = 23\frac { 2 } { 3 } & b = e2/3