Question
Question: If f”(x) \> 0 ∀ x ∈ R then for any two real num bers x<sub>1</sub> and x<sub>2</sub>, (x<sub>1</sub>...
If f”(x) > 0 ∀ x ∈ R then for any two real num bers x1 and x2, (x1≠x2)
A
f(2x1+x2)>2f(x1)+f(x2)
B
f(2x1+x2)<2f(x1)+f(x2′)
C
f′(2x1+x2)>2f′(x1)+f′(x2)
D
f′(2x1+x2)<2f′(x1)+f′(x2)
Answer
f(2x1+x2)<2f(x1)+f(x2′)
Explanation
Solution
Let A = (x1, f(x1)) and B = (x3, f(x2)) be any two points on the graph of y = f(x). Chord AB will lie completely above the graph of y = f(x).
Hence 2f(x1)+f(x2)>f(2x1+x2)