Question
Mathematics Question on Limits
If function f(x) = \begin{cases} x\, \sin\left(\frac{1}{x} \right) ; & \text{x \ne 0} \\\[2ex] a \,;& \text{x = 0} \end{cases} is continuous at x=0, then value of a is
A
1
B
−1
C
0
D
None of the options
Answer
0
Explanation
Solution
We have, f(0)=a
∴x→0+limf(x)=h→0limf(0+h)=h→0limhsinh1=0
and x→0−limf(x)=h→0limf(0−h)
=limh→0(−h)sin−h1=0
Since, f(x) is continuous at x=0, we must have
f(0)=x→0+limf(x)=x→0−limf(x)⇒a=0