Solveeit Logo

Question

Mathematics Question on Limits

If function f(x) = \begin{cases} x\, \sin\left(\frac{1}{x} \right) ; & \text{x \ne 0} \\\[2ex] a \,;& \text{x = 0} \end{cases} is continuous at x=0x = 0, then value of aa is

A

11

B

1-1

C

00

D

None of the options

Answer

00

Explanation

Solution

We have, f(0)=af(0)=a
limx0+f(x)=limh0f(0+h)=limh0hsin1h=0\therefore \displaystyle\lim _{x \rightarrow 0^{+}} f(x)=\displaystyle\lim _{h \rightarrow 0} f(0+h)=\displaystyle\lim _{h \rightarrow 0} h \sin \frac{1}{h}=0
and limx0f(x)=limh0f(0h)\displaystyle\lim _{x \rightarrow 0^{-}} f(x)=\displaystyle\lim _{h \rightarrow 0} f(0-h)
=limh0(h)sin1h=0=\lim _{h \rightarrow 0}(-h) \sin \frac{1}{-h}=0
Since, f(x)f(x) is continuous at x=0x=0, we must have
f(0)=limx0+f(x)=limx0f(x)a=0f(0)=\displaystyle\lim _{x \rightarrow 0^{+}} f(x)=\displaystyle\lim _{x \rightarrow 0^{-}} f(x) \Rightarrow a=0