Solveeit Logo

Question

Question: If $f(\theta) = |\sin\theta + 1| + |\sin\theta - 2| + |\sin\theta - 1| + |\sin\theta - 3|$ where $0 ...

If f(θ)=sinθ+1+sinθ2+sinθ1+sinθ3f(\theta) = |\sin\theta + 1| + |\sin\theta - 2| + |\sin\theta - 1| + |\sin\theta - 3| where 0θ2π0 \leq \theta \leq 2\pi, then the sum of maximum and minimum value of f(θ)f(\theta) is

Answer

14

Explanation

Solution

Let x=sinθx = \sin\theta. The range of xx is [1,1][-1, 1]. The function simplifies to f(x)=72xf(x) = 7-2x for x[1,1]x \in [-1, 1]. This is a decreasing linear function. Its maximum value on [1,1][-1, 1] is f(1)=9f(-1)=9 and its minimum value is f(1)=5f(1)=5. The sum of these values is 9+5=149+5=14.