Question
Question: If $f(\theta) = \sin^2 \theta + \sin^2 (\theta + \frac{2\pi}{3}) + \sin^2 (\theta + \frac{4\pi}{3})$...
If f(θ)=sin2θ+sin2(θ+32π)+sin2(θ+34π), then f(15π) is equal to

Answer
23
Explanation
Solution
Using the identity sin2x=21−cos(2x), we get f(θ)=21−cos(2θ)+21−cos(2θ+34π)+21−cos(2θ+38π) f(θ)=23−21[cos(2θ)+cos(2θ+34π)+cos(2θ+38π)] Since cos(2θ+38π)=cos(2θ+32π), the sum of cosines is cos(2θ)+cos(2θ+32π)+cos(2θ+34π)=0. Therefore, f(θ)=23.
