Solveeit Logo

Question

Question: If $f(\theta) = \sin^2 \theta + \sin^2 (\theta + \frac{2\pi}{3}) + \sin^2 (\theta + \frac{4\pi}{3})$...

If f(θ)=sin2θ+sin2(θ+2π3)+sin2(θ+4π3)f(\theta) = \sin^2 \theta + \sin^2 (\theta + \frac{2\pi}{3}) + \sin^2 (\theta + \frac{4\pi}{3}), then f(π15)f(\frac{\pi}{15}) is equal to

Answer

32\frac{3}{2}

Explanation

Solution

Using the identity sin2x=1cos(2x)2\sin^2 x = \frac{1 - \cos(2x)}{2}, we get f(θ)=1cos(2θ)2+1cos(2θ+4π3)2+1cos(2θ+8π3)2f(\theta) = \frac{1 - \cos(2\theta)}{2} + \frac{1 - \cos(2\theta + \frac{4\pi}{3})}{2} + \frac{1 - \cos(2\theta + \frac{8\pi}{3})}{2} f(θ)=3212[cos(2θ)+cos(2θ+4π3)+cos(2θ+8π3)]f(\theta) = \frac{3}{2} - \frac{1}{2} [\cos(2\theta) + \cos(2\theta + \frac{4\pi}{3}) + \cos(2\theta + \frac{8\pi}{3})] Since cos(2θ+8π3)=cos(2θ+2π3)\cos(2\theta + \frac{8\pi}{3}) = \cos(2\theta + \frac{2\pi}{3}), the sum of cosines is cos(2θ)+cos(2θ+2π3)+cos(2θ+4π3)=0\cos(2\theta) + \cos(2\theta + \frac{2\pi}{3}) + \cos(2\theta + \frac{4\pi}{3}) = 0. Therefore, f(θ)=32f(\theta) = \frac{3}{2}.