Solveeit Logo

Question

Question: If f<sub>r</sub>(a) = \(\left( \cos\frac{\alpha}{r^{2}} + i\sin\frac{\alpha}{r^{2}} \right)\)×\(\lef...

If fr(a) = (cosαr2+isinαr2)\left( \cos\frac{\alpha}{r^{2}} + i\sin\frac{\alpha}{r^{2}} \right)×(cos2αr2+isin2αr2)\left( \cos\frac{2\alpha}{r^{2}} + i\sin\frac{2\alpha}{r^{2}} \right)….

(cosαr+isinαr)\left( \cos\frac{\alpha}{r} + i\sin\frac{\alpha}{r} \right) hen limnfn\lim_{n \rightarrow \infty}f_{n} (p) equals

A

–1

B

1

C

– I

D

i

Answer

i

Explanation

Solution

Using De Moivre's theorem

fr (a) = e2iα/r2e^{2i\alpha/r^{2}}….eiα/re^{i\alpha/r}

= e(iα/r2)(1+2+......+r)e^{(i\alpha/r^{2})(1 + 2 + ...... + r)}

= e(iα/r2)[r(r+1)/2]e^{(i\alpha/r^{2})\lbrack r(r + 1)/2\rbrack} = e(iα/2)(1+1/r)e^{(i\alpha/2)(1 + 1/r)}

\ limnfn(π)\lim_{n \rightarrow \infty}f_{n}(\pi) = eiπ/2(1+1/n)e^{i\pi/2(1 + 1/n)}

= eip/2 = cos(π2)\left( \frac{\pi}{2} \right) + i sin(π2)\left( \frac{\pi}{2} \right) = i