Question
Question: If f<sub>1</sub>(x) = 2x, f<sub>2</sub>(x) = 3 sinx − x cosx then for x ∈\(\left( 0 , \frac { \pi } ...
If f1(x) = 2x, f2(x) = 3 sinx − x cosx then for x ∈(0,2π)
A
f1(x) < f2(x)
B
f1(x) > f2(x)
C
f1(|x|) <f2(|x|)
D
None of these
Answer
f1(x) > f2(x)
Explanation
Solution
Let f(x) = f1(x) − f2(x) = 2x − 3sinx + x cosx
⇒ f '(x) = 2 − 2cosx − x sinx
⇒ f"(x) = sinx − x cosx = cosx (tanx - x)
⇒ f"(x)>0 ∀ x ∈ (0, π/2).
Thus f;(x) is increasing in (0, π/2). f'(0) = 0
⇒ f(x) > 0 ∀ x ∈ (0, π/2).
Thus f(x) is increasing in (0, π/2). f(0) = 0
⇒ f(x) > 0 ∀ x ∈ (0, π/2)
⇒ f1(x) > f2(x).