Solveeit Logo

Question

Question: If from each of the three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 b...

If from each of the three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, one ball is drawn at random, then the probability that 2 white and 1 black ball will be drawn is

A

13/32

B

¼

C

1/32

D

3/16

Answer

13/32

Explanation

Solution

The contents of three boxes are

3W 1B

II 2W 2B

III 1W 3B

Let Wi(i=1,2,3)\mathrm { W } _ { \mathrm { i } } ( \mathrm { i } = 1,2,3 ) be the event of drawing a white ball from ith i ^ { \text {th } } box and Bi(i=1,2,3)\mathrm { B } _ { \mathrm { i } } ( \mathrm { i } = 1,2,3 ) be the event of drawing a

black ball from 0th box. Then,

Required probability.

=P(W1)P(W2)P(B3)+P(W1)P(B2)P(W3)= \mathrm { P } \left( \mathrm { W } _ { 1 } \right) \mathrm { P } \left( \mathrm { W } _ { 2 } \right) \mathrm { P } \left( \mathrm { B } _ { 3 } \right) + \mathrm { P } \left( \mathrm { W } _ { 1 } \right) \mathrm { P } \left( \mathrm { B } _ { 2 } \right) \mathrm { P } \left( \mathrm { W } _ { 3 } \right)