Solveeit Logo

Question

Question: If \(\frac{x}{a}\)+ \(\frac{y}{b}\)= 1 and \(\frac{x^{2}}{a}\)+ \(\frac{y^{2}}{b}\)= \(\frac{ab}{a +...

If xa\frac{x}{a}+ yb\frac{y}{b}= 1 and x2a\frac{x^{2}}{a}+ y2b\frac{y^{2}}{b}= aba+b\frac{ab}{a + b} then value of xn+1a\frac{x^{n + 1}}{a}+ yn+1b\frac{y^{n + 1}}{b} = (a+bab)k\left( \frac{\sqrt{a + b}}{\sqrt{ab}} \right)^{k} then relation between n and k.

A

2n = k

B

n = 2k

C

2n + k = 0

D

None

Answer

2n + k = 0

Explanation

Solution

From (1) equation y = b(ax)a\frac{b(a - x)}{a} put in (2)

we get x = aba+b\frac{ab}{a + b}, y = aba+b\frac{ab}{a + b}

Now xn+1a\frac{x^{n + 1}}{a}+ yn+1b\frac{y^{n + 1}}{b}=(aba+b)n+1\left( \frac{ab}{a + b} \right)^{n + 1}+ (aba+b)n+1\left( \frac{ab}{a + b} \right)^{n + 1}

=(aba+b)n\left( \frac{ab}{a + b} \right)^{n}= (a+bab)2n\left( \frac{\sqrt{a + b}}{\sqrt{ab}} \right)^{- 2n}

⇒ – 2n = k ⇒ 2n + k = 0