Solveeit Logo

Question

Question: If \(\frac{x^{2}}{(x^{2} + a^{2})(x^{2} + b^{2})} = k\left( \frac{a^{2}}{x^{2} + a^{2}} - \frac{b^{2...

If x2(x2+a2)(x2+b2)=k(a2x2+a2b2x2+b2)\frac{x^{2}}{(x^{2} + a^{2})(x^{2} + b^{2})} = k\left( \frac{a^{2}}{x^{2} + a^{2}} - \frac{b^{2}}{x^{2} + b^{2}} \right)then k =

A

a2b2a^{2} - b^{2}

B

1a+b\frac{1}{a + b}

C

1ab\frac{1}{a - b}

D

1a2b2\frac{1}{a^{2} - b^{2}}

Answer

1a2b2\frac{1}{a^{2} - b^{2}}

Explanation

Solution

x2=k[a2(x2+b2)b2(x2+a2)]x^{2} = k\lbrack a^{2}(x^{2} + b^{2}) - b^{2}(x^{2} + a^{2})\rbrack

\Rightarrow x2=k[(a2b2)x2]1=k(a2b2)x^{2} = k\lbrack(a^{2} - b^{2})x^{2}\rbrack \Rightarrow 1 = k(a^{2} - b^{2})

k=1a2b2\therefore k = \frac{1}{a^{2} - b^{2}}.