Solveeit Logo

Question

Question: If \(\frac{(x - 1)^{2}}{x^{3} + x} = \frac{A}{x} + \frac{Bx + C}{x^{2} + 1}\), then...

If (x1)2x3+x=Ax+Bx+Cx2+1\frac{(x - 1)^{2}}{x^{3} + x} = \frac{A}{x} + \frac{Bx + C}{x^{2} + 1}, then

A

A=1,B=0,C=2A = 1,B = 0,C = 2

B

A=1,B=0,C=2A = 1,B = 0,C = - 2

C

A=1,B=0,C=2A = - 1,B = 0,C = - 2

D

None of these

Answer

A=1,B=0,C=2A = 1,B = 0,C = - 2

Explanation

Solution

A(x2+1)+x(Bx+C)=(x1)2A(x^{2} + 1) + x(Bx + C) = (x - 1)^{2}

For x=i,B+Ci=2ix = i, - B + Ci = - 2i \Rightarrow B=0,C=2B = 0,C = - 2

Equating coefficient of x2x^{2},

A+B=1A=1B=10=1A + B = 1 \Rightarrow A = 1 - B = 1 - 0 = 1;

A=1,B=0,C=2\therefore A = 1,B = 0,C = - 2.