Solveeit Logo

Question

Question: If \(\frac{T_{2}}{T_{3}}\) in the expansion of \((a + b)^{n}\) and \(\frac{T_{3}}{T_{4}}\) in the ex...

If T2T3\frac{T_{2}}{T_{3}} in the expansion of (a+b)n(a + b)^{n} and T3T4\frac{T_{3}}{T_{4}} in the expansion of (a+b)n+3(a + b)^{n + 3} are equal, then n=n =

A

3

B

4

C

5

D

6

Answer

5

Explanation

Solution

\because T2T3=2n2+1.ba=2n1(ba)\frac{T_{2}}{T_{3}} = \frac{2}{n - 2 + 1}.\frac{b}{a} = \frac{2}{n - 1}\left( \frac{b}{a} \right) and

T3T4=3n+33+1.(ba)=3n+1(ba)\frac{T_{3}}{T_{4}} = \frac{3}{n + 3 - 3 + 1}.\left( \frac{b}{a} \right) = \frac{3}{n + 1}\left( \frac{b}{a} \right)

\because T2T3=T3T4\frac{T_{2}}{T_{3}} = \frac{T_{3}}{T_{4}} (given) ;

\therefore 2n1(ba)=3n+1(ba)\frac{2}{n - 1}\left( \frac{b}{a} \right) = \frac{3}{n + 1}\left( \frac{b}{a} \right)2n+2=3n32n + 2 = 3n - 3n=5n = 5