Solveeit Logo

Question

Question: If \(\frac{\pi}{6},\frac{\pi}{2},\frac{5\pi}{6}\)and \(30^{o},90^{o},150^{o}\), then the number of d...

If π6,π2,5π6\frac{\pi}{6},\frac{\pi}{2},\frac{5\pi}{6}and 30o,90o,150o30^{o},90^{o},150^{o}, then the number of different solutions of 322cos2θ=3cosθ2 - 2\cos^{2}\theta = 3\cos\theta is.

A

Zero

B

Two

C

One

D

Infinite

Answer

Two

Explanation

Solution

\Rightarrow

Where θ=210\theta = 210{^\circ}, 330330{^\circ}

Now 1cos2x+1cos22x=21 - \cos 2x + 1 - \cos^{2}2x = 2

cos2x(cos2x+1)=0\cos 2x(\cos 2x + 1) = 0

\therefore cos2x=0,1\cos 2x = 0, - 1.